Maximum number of distinct and nonequivalent nonstandard squares in a word

Tomasz Kociumaka¹ Jakub Radoszewski¹ Woiciech Rytter ^{1,2} Tomasz Waleń¹

¹Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland [kociumaka, jrad, rytter, walen] @mimuw.edu.pl

²Faculty of Mathematics and Computer Science, Copernicus University, Toruń, Poland

DLT 2014, 2014-08-27

Definition of square

Square is a factor xy, such that x = y. For example: *aba aba* is a square.

Definition of square

Square is a factor xy, such that x = y. For example: *aba aba* is a square.

Maximal number of distinct squares SQ(n)

The SQ(n) denotes the maximal number of distinct squares in a word of length n.

Definition of square

Square is a factor xy, such that x = y. For example: *aba aba* is a square.

Maximal number of distinct squares SQ(n)

The SQ(n) denotes the maximal number of distinct squares in a word of length n.

Theorem (Ilie, 2007)

$$n - O(\sqrt{n}) \leq SQ(n) \leq 2n - O(\log n).$$

Definition of \approx -square

For binary relation \approx , the \approx -square is a factor xy, such that $x \approx y$.

Definition of \approx -square

For binary relation \approx , the \approx -square is a factor xy, such that $x \approx y$.

Some candidates for \approx relation

- Abelian equality,
- order preserving matching,
- parametrized matching.

\approx_{ab} – Abelian

 $x \approx_{ab} y$ if each character of the alphabet occurs the same number of times in x and y. In other words y is an anagram of x.

Example

1321 $pprox_{ab}$ 1213,

Abelian squares were first studied by Erdös [1961], who posed a question on the smallest alphabet size for which there exists an infinite Abelian-square-free word.

Candidates for \approx

\approx_{op} – order preserving

$$\begin{aligned} x \approx_{op} y \text{ if for all } 1 \leq i,j \leq |x| = |y|, \\ x[i] \leq x[j] \text{ iff } y[i] \leq y[j] \end{aligned}$$

Example

\approx_{param} – parametrized

(similar to
$$\approx_{op}$$
),
 $x \approx_{param} y$ if for all $1 \le i, j \le |x| = |y|$,
 $x[i] = x[j]$ iff $y[i] = y[j]$.

Example

 $1412 \approx_{param} 2123$

Parametrized equality has been proposed by Baker [JCSS, 1995].

Maximal number of distinct squares

What about maximal number of distinct squares?

First we should precise what does it mean *distinct*:

- SQ_≈(n) denotes the maximal number of distinct factors (in a sense of = relation) that are ≈-squares in a word of length n,
- SQ'_≈(n) denotes the maximal number of distinct factors (in a sense of ≈ relation) that are ≈-squares in a word of length n (valid for transitive ≈),

For all "normal" relations \approx :

 $SQ_{\approx}(n) \geq SQ'_{\approx}(n)$

Some examples of Abelian squares

 $u = 01001 \ 11000$ $v = 00110 \ 01001$

u, v are:

- different in sense of definition of SQ_{Abel} (since $u \neq v$),
- equivalent in sense of definition of SQ'_{Abel} (since $u \approx_{ab} v$).

$$SQ_{Abel}(n) = \Theta(n^2)$$

$$SQ_{Abel}(n) = \Theta(n^2)$$

Proof.

Take word:

$$w_k = 0^k 10^k 10^{2k}$$

it contains $\Theta(k^2)$ *ab*-squares of form:

$$0^{a}10^{b} 0^{k-b}10^{a+2b-k}$$

for
$$k \leq a + b \leq 2k$$
.
Note that $SQ'_{Abel}(w_k) = \Theta(n)$.

$$SQ'_{\rm Abel}(n) = \Omega(n^{1.5}/\log n)$$

$$SQ'_{
m Abel}(n) = \Omega(n^{1.5}/\log n)$$

Proof.

Take a word:

$$\mathbf{w}_k = \sum_{i=1}^k 0^i 1^i = 01\ 0011\ 000111\ \dots\ 0^k 1^k$$

Since $|\mathbf{w}_k| = \Theta(k^2)$ we have to show that it contains at least $\Theta(k^3/\log n)$ different Abelian squares.

Abelian squares, proof continued

Definition of $Sums_{i,j}$

Let

$$Sums(a, b) = |\{i \otimes j : a \le i \le j \le b\}|.$$

where $i \otimes j = \sum_{t=i}^{j} t = (i+j)(j-i+1)/2.$

Example

Sums $(2,5) = \{2,3,4,5,7,9,12,14\}.$ since $7 = 3 \otimes 4$, $9 = 2 \otimes 4 = 4 \otimes 5$, $12 = 3 \otimes 5$, $14 = 2 \otimes 5$

Abelian squares, proof continued

Definition of $Sums_{i,j}$

Let

Sums
$$(a, b) = |\{i \otimes j : a \le i \le j \le b\}|.$$

where $i \otimes j = \sum_{t=i}^{j} t = (i+j)(j-i+1)/2.$

Example

Sums $(2,5) = \{2,3,4,5,7,9,12,14\}.$

since $7 = 3 \otimes 4$, $9 = 2 \otimes 4 = 4 \otimes 5$, $12 = 3 \otimes 5$, $14 = 2 \otimes 5$

Bounds on *Sums_{i,j}*

This set is interesting since, it is quite dense:

$$|Sums_{i,j}| = \Omega(|j-i|^2/\log j)$$

Abelian squares, notion of $(p, q)_{ab}$ -squares

$(p,q)_{ab}$ -square for $\Sigma = \{0,1\}$

xy is $(p, q)_{ab}$ -square if:

- ► $x \approx_{ab} y$,
- there are exactly p characters 0 in x, and in y,
- there are exactly q characters 1 in x, and in y.

01001 11000, 00110 01001 are $(2,3)_{ab}$ -squares.

We will also use:

$$\mathbf{w}_{p,q} = \sum_{i=p}^{q} 0^{i} 1^{i} = 0^{p} 1^{p} 0^{p+1} 1^{p+1} \dots 0^{q} 1^{q}$$

Lemma. Balanced Abelian squares $-(p, p)_{ab}$ -squares

For any $p \in Sums_{\lceil 3k/4 \rceil,k}$ the $(p,p)_{ab}$ -square occurs in \mathbf{w}_k .

This lemma gives $\Theta(k^2/\log k)$ different Abelian squares in word \mathbf{w}_k of length $\Theta(k^2)$.

Proof.

Let $p = i \otimes j$ and $\ell < i$ be the largest index s. t. $\ell \otimes (i - 1) \ge p$. Take subwords $x = \mathbf{w}_{\ell,i-1}$, $y = \mathbf{w}_{i,j}$ of \mathbf{w}_k .

- if |x| = |y|, then xy is $(p, p)_{ab}$ -square
- otherwise we can do some cutting and shifting of x and y. Let Δ = |x| - |y| > 0. We modify x, y to obtain x', y': x': cut the first Δ/2 zeros and the last Δ/2 ones. y': add Δ/2 ones on the left, and remove last Δ/2 ones.

Lemma. $(p, p \pm \delta)_{ab}$ -squares

For any $p = (i \otimes j) \in Sums_{[3k/4],k}$ the \mathbf{w}_k contains at least k/4 different $(p, p \pm \delta)_{ab}$ -squares.

Proof.

Modify $(p, p)_{ab}$ -square from previous lemma by slightly extending it or shrink it.

We can do that for at least k/4 values of δ .

Finally

Combining previous lemmas we have

$$|Sums_{\lceil 3k/4\rceil,k}| \cdot k/4 = \Theta(k^3/\log n)$$

different Abelian squares within word \mathbf{w}_k of length $\Theta(k^2)$, and this gives required bound $\Omega(n^{1.5}/\log n)$.

For unbounded alphabet
$$SQ_{\mathrm{op}}(n) = \Theta(n^2)$$

Proof.

Take word:

$$w_k = 123 \dots k$$

Every factor of w_k of even length is an order-preserving square.

For alphabet of constant size $SQ_{op}(n) = \Theta(n)$

For alphabet of constant size
$$SQ_{op}(n) = \Theta(n)$$

Proof.

Let xy is a \approx_{op} -square, there are two possibilities:

- case (a): Σ(x) = Σ(y), so x = y and xy is regular square, so there could be 2n of such squares,
- case (b): Σ(x) ≠ Σ(y), we can show that there are O(n) of such squares.

Lemma

Let w be a word of length n over an alphabet Σ , and let Σ_1, Σ_2 be two distinct subsets of Σ , $|\Sigma_1| = |\Sigma_2|$. Let f be a given bijection between Σ_1 and Σ_2 . Then there are at most n distinct subwords of w of the form xf(x), where $Alph(x) = \Sigma_1$.

Example

Let

w = 12321231322

 $\Sigma_1 = \{1, 2\}, \quad \Sigma_2 = \{1, 3\}, \quad f(1) = 1, f(2) = 3$

The factor 212313 is of form xf(x) (x = 212, f(x) = 313).

Proof.

Suppose a word xf(x), where Alph $(x) = \Sigma_1$, starts at position *i*. Let j > i be the first occurrence of a letter in $\Sigma_2 - \Sigma_1$, w[j] = c. This letter is located in f(x). Let $k \ge i$ be the first occurrence of $f^{-1}(c)$. Then |x| = j - k and this uniquely determines the word xf(x) as w[i..i+2(j-k)-1].

So the number of such distinct subwords does not exceed *n*.

And finally

For $|\Sigma| = O(1)$, there are O(1) possible of choices for (Σ_1, Σ_2, f) with $\Sigma_1 \neq \Sigma_2$ and f being an non-decreasing bijection. For each choice we have at most n different \approx_{op} -squares due to the previous lemma.

There exists infinite word over alphabet $\Sigma = \{0, 1, 2\}$ that avoid \approx_{op} -squares of length at least 4. (since it is impossible to avoid squares of length 2).

Proof.

Take any square free word τ (i.e. Thue-Morse word) over alphabet $\{0, 1, 2\}$. Consider morphism:

$$\psi$$
 : 0 \mapsto 10, 1 \mapsto 11, 2 \mapsto 12.

By case-by-case analysis we can prove that $\psi(\tau)$ avoids \approx_{op} -squares of length at least 4.

Let τ be the infinite Thue-Morse word. The word $\psi(\tau)$ is parameterized-cube-free.

In this talk:

- $SQ_{Abel}(n) = \Theta(n^2)$
- $SQ'_{\text{Abel}}(n) = \Omega(n^{1.5}/\log n)$
- $SQ_{\mathrm{op}}(n) = \Theta(n^2)$ for unbounded Σ ,
- $SQ_{\mathrm{op}}(n) = \Theta(n)$ for constant size Σ ,
- inifinite words avoiding op-squares, parametrized cubes.

Other results in the publication:

- $SQ'_{Abel}(n,2) = O(mn)$ where m is the number of blocks,
- $SQ_{\mathrm{op}}(n,k) = \Omega(kn),$
- $SQ_{\text{param}}(n) = \Theta(n^2)$ for unbounded Σ ,
- $SQ_{\text{param}}(n,2) = \Theta(n).$

Thank you for your attention!