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Definition of square

Square is a factor xy , such that x = y .
For example: aba aba is a square.

Maximal number of distinct squares SQ(n)

The SQ(n) denotes the maximal number of distinct squares in a
word of length n.

Theorem (Ilie, 2007)

n − O(
√
n) ≤ SQ(n) ≤ 2n − O(log n).
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What about non-standard equalities?

Definition of ≈-square
For binary relation ≈, the ≈-square is a factor xy , such that x ≈ y .

Some candidates for ≈ relation

I Abelian equality,
I order preserving matching,
I parametrized matching.
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Candidates for ≈

≈ab – Abelian

x ≈ab y if each character of the alphabet occurs the same number
of times in x and y .
In other words y is an anagram of x .

Example

1321 ≈ab 1213,

Abelian squares were first studied by Erdös [1961], who posed a
question on the smallest alphabet size for which there exists an
infinite Abelian-square-free word.
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Candidates for ≈

≈op – order preserving

x ≈op y if for all 1 ≤ i , j ≤ |x | = |y |,
x [i ] ≤ x [j ] iff y [i ] ≤ y [j ]

Example

1412 ≈op 2523,

1 4 1 2 2 5 2 3
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Candidates for ≈

≈param – parametrized

(similar to ≈op),
x ≈param y if for all 1 ≤ i , j ≤ |x | = |y |,

x [i ] = x [j ] iff y [i ] = y [j ].

Example

1412 ≈param 2123

Parametrized equality has been proposed by Baker [JCSS, 1995].
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Maximal number of distinct squares

What about maximal number of distinct squares?

First we should precise what does it mean distinct:
I SQ≈(n) denotes the maximal number of distinct factors

(in a sense of = relation) that are ≈-squares
in a word of length n,

I SQ ′≈(n) denotes the maximal number of distinct factors
(in a sense of ≈ relation) that are ≈-squares
in a word of length n (valid for transitive ≈),

For all “normal” relations ≈:

SQ≈(n) ≥ SQ ′≈(n)
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Abelian squares

Some examples of Abelian squares

u = 01001 11000

v = 00110 01001

u, v are:
I different in sense of definition of SQAbel (since u 6= v),
I equivalent in sense of definition of SQ ′Abel (since u ≈ab v).
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Abelian squares

Theorem

SQAbel(n) = Θ(n2)

Proof.
Take word:

wk = 0k10k102k

it contains Θ(k2) ab-squares of form:

0a10b 0k−b10a+2b−k

for k ≤ a + b ≤ 2k .
Note that SQ ′Abel(wk) = Θ(n).

9/25



Abelian squares

Theorem

SQAbel(n) = Θ(n2)

Proof.
Take word:

wk = 0k10k102k

it contains Θ(k2) ab-squares of form:

0a10b 0k−b10a+2b−k

for k ≤ a + b ≤ 2k .
Note that SQ ′Abel(wk) = Θ(n).

9/25



Abelian squares

Theorem

SQ ′Abel(n) = Ω(n1.5/ log n)

Proof.
Take a word:

wk =
k∑

i=1

0i1i = 01 0011 000111 . . . 0k1k

Since |wk | = Θ(k2) we have to show that it contains at least
Θ(k3/ log n) different Abelian squares.
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Abelian squares, proof continued

Definition of Sumsi ,j

Let
Sums(a, b) = |{i ⊗ j : a ≤ i ≤ j ≤ b}|.

where i ⊗ j =
∑j

t=i t = (i + j)(j − i + 1)/2.

Example

Sums(2, 5) = {2, 3, 4, 5, 7, 9, 12, 14}.
since 7 = 3⊗ 4, 9 = 2⊗ 4 = 4⊗ 5, 12 = 3⊗ 5, 14 = 2⊗ 5

Bounds on Sumsi ,j

This set is interesting since, it is quite dense:

|Sumsi ,j | = Ω(|j − i |2/ log j)
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Abelian squares, notion of (p, q)ab-squares

(p, q)ab-square for Σ = {0, 1}
xy is (p, q)ab-square if:

I x ≈ab y ,
I there are exactly p characters 0 in x , and in y ,
I there are exactly q characters 1 in x , and in y .

01001 11000, 00110 01001 are (2, 3)ab-squares.

We will also use:

wp,q =

q∑
i=p

0i1i = 0p1p0p+11p+1 . . . 0q1q
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Abelian squares, proof continued

Lemma. Balanced Abelian squares – (p, p)ab-squares

For any p ∈ Sumsd3k/4e,k the (p, p)ab-square occurs in wk .

This lemma gives Θ(k2/ log k) different Abelian squares in word wk

of length Θ(k2).
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Proof.
Let p = i ⊗ j and ` < i be the largest index s. t. `⊗ (i − 1) ≥ p.
Take subwords x = w`,i−1, y = wi ,j of wk .

I if |x | = |y |, then xy is (p, p)ab-square
I otherwise we can do some cutting and shifting of x and y .

Let ∆ = |x | − |y | > 0. We modify x , y to obtain x ′, y ′:
x ′: cut the first ∆/2 zeros and the last ∆/2 ones.
y ′: add ∆/2 ones on the left, and remove last ∆/2 ones.

0` 1` 0`+1 1`+1

· · ·
0i−1 1i−1 0i 1i

· · ·
0j 1j

x y
∆ |y |

· · · · · ·

∆/2 x ′ y ′ ∆/2∆/2
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Abelian squares, proof continued

Lemma. (p, p ± δ)ab-squares

For any p = (i ⊗ j) ∈ Sumsd3k/4e,k the wk contains at least k/4
different (p, p ± δ)ab-squares.

Proof.
Modify (p, p)ab-square from previous lemma by slightly extending it
or shrink it.
We can do that for at least k/4 values of δ.

· · ·
0i−1 1i−1

· · ·
0j 1j

x ′ y ′
β α δ α
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Abelian squares, proof continued

Finally

Combining previous lemmas we have

|Sumsd3k/4e,k | · k/4 = Θ(k3/ log n)

different Abelian squares within word wk of length Θ(k2), and this
gives required bound Ω(n1.5/ log n).
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Order preserving squares, trivial bound on SQop(n)

Theorem
For unbounded alphabet SQop(n) = Θ(n2)

Proof.
Take word:

wk = 123 . . . k

Every factor of wk of even length is an order-preserving square.

17/25



Order preserving squares, |Σ| = O(1)

Theorem
For alphabet of constant size SQop(n) = Θ(n)

Proof.
Let xy is a ≈op-square, there are two possibilities:

I case (a): Σ(x) = Σ(y), so x = y and xy is regular square, so
there could be 2n of such squares,

I case (b): Σ(x) 6= Σ(y), we can show that there are O(n) of
such squares.
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Order preserving squares, |Σ| = O(1)

Lemma
Let w be a word of length n over an alphabet Σ, and let Σ1,Σ2 be
two distinct subsets of Σ, |Σ1| = |Σ2|. Let f be a given bijection
between Σ1 and Σ2. Then there are at most n distinct subwords of
w of the form xf (x), where Alph(x) = Σ1.

Example

Let
w = 12321231322

Σ1 = {1, 2}, Σ2 = {1, 3}, f (1) = 1, f (2) = 3

The factor 212313 is of form xf (x) (x = 212, f (x) = 313).
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Order preserving squares, |Σ| = O(1)

Proof.
Suppose a word xf (x), where Alph(x) = Σ1, starts at position i .
Let j > i be the first occurrence of a letter in Σ2 − Σ1, w [j ] = c .
This letter is located in f (x).
Let k ≥ i be the first occurrence of f −1(c).
Then |x | = j − k and this uniquely determines the word xf (x) as
w [i ..i + 2(j − k)− 1].
So the number of such distinct subwords does not exceed n.
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Order preserving squares, |Σ| = O(1)

And finally

For |Σ| = O(1), there are O(1) possible of choices for (Σ1,Σ2, f )
with Σ1 6= Σ2 and f being an non-decreasing bijection.
For each choice we have at most n different ≈op-squares due to the
previous lemma.
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Words avoiding order preserving squares

Theorem
There exists infinite word over alphabet Σ = {0, 1, 2} that avoid
≈op-squares of length at least 4.
(since it is impossible to avoid squares of length 2).

Proof.
Take any square free word τ (i.e. Thue-Morse word) over alphabet
{0, 1, 2}.
Consider morphism:

ψ : 0 7→ 10, 1 7→ 11, 2 7→ 12.

By case-by-case analysis we can prove that ψ(τ) avoids
≈op-squares of length at least 4.
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Words avoiding parametrized cubes

Theorem
Let τ be the infinite Thue-Morse word. The word ψ(τ) is
parameterized-cube-free.
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Summary

In this talk:
I SQAbel(n) = Θ(n2)

I SQ ′Abel(n) = Ω(n1.5/ log n)

I SQop(n) = Θ(n2) for unbounded Σ,
I SQop(n) = Θ(n) for constant size Σ,
I inifinite words avoiding op-squares, parametrized cubes.

Other results in the publication:
I SQ ′Abel(n, 2) = O(mn) where m is the number of blocks,
I SQop(n, k) = Ω(kn),
I SQparam(n) = Θ(n2) for unbounded Σ,
I SQparam(n, 2) = Θ(n).
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Thank you for your attention!
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