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Definition of square

Square is a factor xy, such that x = y.
For example: aba aba is a square.
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Maximal number of distinct squares SQ(n)

The SQ(n) denotes the maximal number of distinct squares in a
word of length n.

Theorem (llie, 2007)

n— O(v/n) < SQ(n) < 2n — O(log n).



What about non-standard equalities?

Definition of ~-square

For binary relation ~, the ~-square is a factor xy, such that x ~ y.




What about non-standard equalities?

Definition of ~-square

For binary relation ~, the ~-square is a factor xy, such that x ~ y.

Some candidates for ~ relation

» Abelian equality,

» order preserving matching,

» parametrized matching.



Candidates for ~

~,p — Abelian

X ”2,p vy if each character of the alphabet occurs the same number
of times in x and y.
In other words y is an anagram of x.

Example
1321 ==,p 1213,

Abelian squares were first studied by Erdds [1961], who posed a
question on the smallest alphabet size for which there exists an
infinite Abelian-square-free word.



Candidates for ~

~op — order preserving

x mop y if forall 1 <i,j <|x|=|y|,
x[i] < x[j] iff y[i] < y[j]

1412 ~,, 2523,

dor shsl
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Candidates for ~

R param — Para metrized

(similar to ~qp),
X Rparam y if for all 1 <, j < |x| = |y],
x[i] = x[] i y[i] = y [l

Example
1412 ~param 2123

Parametrized equality has been proposed by Baker [JCSS, 1995].



Maximal number of distinct squares

What about maximal number of distinct squares?

First we should precise what does it mean distinct:

» SQ~(n) denotes the maximal number of distinct factors
(in a sense of = relation) that are ~-squares
in a word of length n,

» SQL(n) denotes the maximal number of distinct factors
(in a sense of ~ relation) that are ~-squares
in a word of length n (valid for transitive ~),

]
For all “normal” relations ~:

SQ~(n) = SQ%(n)



Abelian squares

Some examples of Abelian squares

u = 01001 11000
v = 00110 01001

u, v are:
» different in sense of definition of SQape (since u # v),

» equivalent in sense of definition of SQy}. (since u ~,p v).



Abelian squares

SQanbei(n) = ©(n?)



Abelian squares

SQanbei(n) = ©(n?)

Proof.

Take word:
wy = 0K10X10%%

it contains ©(k?) ab-squares of form:
Oalob 0k—b108+2b—k

for k < a+ b < 2k.
Note that SQ'yp.(wk) = ©(n). O



Abelian squares

SQhpa(n) = Q(”l's/ log n)



Abelian squares

SQhpa(n) = Q(”l's/ log n)

Proof.

Take a word:
k . .
Wi = ZO’I’ — 01 0011 000111 ... OK1K
=1

Since |wk| = ©(k?) we have to show that it contains at least
O(k3/ log n) different Abelian squares. O



Abelian squares, proof continued

Definition of Sums; ;

Let

Sums(a,b) = [{i®j :a<i<j<b}|
where i@ = SY_. t=(i+j)(—i+1)/2
Example

Sums(2,5) = {2,3,4,5,7,9,12,14}.
since7=3®4, 9=2®4=4®5, 12=3®5, 14=2®5




Abelian squares, proof continued

Definition of Sums; ;

Let
Sums(a,b) = [{i®j :a<i<j<b}|

where i®j = S_ t=(i+j)(j—i+1)/2.

Example

Sums(2,5) = {2,3,4,5,7,9,12,14}.
since7=3®4, 9=2®4=4®5, 12=3®5, 14=2®5

Bounds on Sums; ;

This set is interesting since, it is quite dense:

|Sumsij| = Q(lj — %/ log )




Abelian squares, notion of (p, q)ap-squares

(p, q)ap-square for ¥ = {0, 1}
xy is (p, q)ap-square if:

> X =ap Y,

» there are exactly p characters 0 in x, and in vy,

> there are exactly g characters 1 in x, and in y.
01001 11000, 00110 01001 are (2, 3),p-squares.

We will also use:

q
Wpq =Y 017 =0°1P0PF11PHL . 0919
i=p



Abelian squares, proof continued

Lemma. Balanced Abelian squares — (p, p).s-squares

For any p € Sums3 /47 i the (p, p)ap-square occurs in wy.

|
This lemma gives ©(k2/ log k) different Abelian squares in word w
of length ©(k?).



Let p=i®j and £ < i be the largest indexs. t. {® (i — 1) > p.
Take subwords x = wy ;_1, y = w;; of wy.

» if |x| = |y|, then xy is (p, p)ap-square

» otherwise we can do some cutting and shifting of x and y.
Let A = |x| — |y| > 0. We modify x, y to obtain x’, y’:
x': cut the first A/2 zeros and the last A/2 ones.
y': add A/2 ones on the left, and remove last A/2 ones.

O
| A | |y‘ N}
| | X " y '
0° 1¢ ot 1t 0111 o 1 I
= %_A -



Abelian squares, proof continued

Lemma. (p, p & §)ap-squares

For any p = (i ® j) € Sumszy /41« the wy contains at least k/4
different (p, p £ §)ap-squares.

Modify (p, p)ap-square from previous lemma by slightly extending it

or shrink it.
We can do that for at least k/4 values of ¢. O
0t 1t o v
I | I ] [ I | I ] - [ I ]
‘ x' ok—i y’ —k—



Abelian squares, proof continued

Finally

Combining previous lemmas we have
| Sumsysi/a) il - k/4 = ©(k>/ log n)

different Abelian squares within word wy of length ©(k?), and this
gives required bound Q(n'>/log n).



Order preserving squares, trivial bound on SQ,p(n)

For unbounded alphabet SQ,,(n) = ©(n?)

Take word:

we =123 ...k

Every factor of wy of even length is an order-preserving square. [



Order preserving squares, |X| = O(1)

For alphabet of constant size SQqp(n) = ©(n)



Order preserving squares, |X| = O(1)

For alphabet of constant size SQqp(n) = ©(n)

Let xy is a ~qp-square, there are two possibilities:

» case (a): X(x) = X(y), so x =y and xy is regular square, so
there could be 2n of such squares,
» case (b): X(x) # X(y), we can show that there are O(n) of
such squares.
[



Order preserving squares, |X| = O(1)

Lemma

Let w be a word of length n over an alphabet ¥, and let X1, be
two distinct subsets of ¥, |X1| = |X2|. Let f be a given bijection
between Y1 and Y». Then there are at most n distinct subwords of
w of the form xf(x), where Alph(x) = X;.

Example

Let
w = 12321231322

Y ={1,2}, X, ={1,3}, f(1)=1,f(2)=3
The factor 212313 is of form xf(x) (x = 212, f(x) = 313).



Order preserving squares, |X| = O(1)

Proof.

Suppose a word xf(x), where Alph(x) = X1, starts at position /.
Let j > i be the first occurrence of a letter in ¥ — X1, w[j] =c.
This letter is located in f(x).

Let k > i be the first occurrence of f~1(c).

Then |x| = j — k and this uniquely determines the word xf(x) as
wli.i+2( — k) —1].

So the number of such distinct subwords does not exceed n. O




Order preserving squares, |X| = O(1)

And finally

For |X| = O(1), there are O(1) possible of choices for (X1, X2, f)
with X1 # Y, and f being an non-decreasing bijection.

For each choice we have at most n different ~,-squares due to the
previous lemma.



Words avoiding order preserving squares

Theorem

There exists infinite word over alphabet ¥ = {0, 1,2} that avoid
~op-squares of length at least 4.
(since it is impossible to avoid squares of length 2).

Proof.

Take any square free word 7 (i.e. Thue-Morse word) over alphabet
{0,1,2}.
Consider morphism:

W 1 010, 1 11, 2 — 12.

By case-by-case analysis we can prove that (1) avoids
~op-squares of length at least 4. O]



Words avoiding parametrized cubes

Let T be the infinite Thue-Morse word. The word 1)(7) is
parameterized-cube-free.




In this talk:
> SQapa(n) = O(n?)
> SQsper(n) = Q(n'>/log n)
> SQop(n) = ©(n?) for unbounded ¥,
> SQop(n) = O(n) for constant size ¥,
» inifinite words avoiding op-squares, parametrized cubes.

Other results in the publication:

» SQ)\pa(n,2) = O(mn) where m is the number of blocks,
> SQop(n, k) = Q(kn),

> SQparam(n) = ©(n?) for unbounded ¥,

> SQparam(n,2) = O(n).



Thank you for your attention!
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