
Input-Driven Pushdown Automata
with Limited Nondeterminism

Alexander Okhotin Kai Salomaa

Turku, Finland Kingston, Canada

August 27, 2014

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 1 / 35

Outline of the talk

Input-driven PDAs: historical background and definitions

I Other equivalent models

Nondeterministic IDPDA: Size blow-up of determinization

Unambiguous nondeterminism
I nondeterministic −→ unambiguous −→ deterministic

Limited nondeterminism

I k-path NIDPDA and multiple entry DIDPDA
I Determinizing k-path NIDPDAs

F lower bounds for size blow-up
F nondeterministic −→ k-path −→ deterministic

I Decision problems
F Does a given NIDPDA have the k-path property?

Open problems and further topics

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 2 / 35

Outline of the talk

Input-driven PDAs: historical background and definitions
I Other equivalent models

Nondeterministic IDPDA: Size blow-up of determinization

Unambiguous nondeterminism
I nondeterministic −→ unambiguous −→ deterministic

Limited nondeterminism

I k-path NIDPDA and multiple entry DIDPDA
I Determinizing k-path NIDPDAs

F lower bounds for size blow-up
F nondeterministic −→ k-path −→ deterministic

I Decision problems
F Does a given NIDPDA have the k-path property?

Open problems and further topics

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 2 / 35

Outline of the talk

Input-driven PDAs: historical background and definitions
I Other equivalent models

Nondeterministic IDPDA: Size blow-up of determinization

Unambiguous nondeterminism
I nondeterministic −→ unambiguous −→ deterministic

Limited nondeterminism

I k-path NIDPDA and multiple entry DIDPDA
I Determinizing k-path NIDPDAs

F lower bounds for size blow-up
F nondeterministic −→ k-path −→ deterministic

I Decision problems
F Does a given NIDPDA have the k-path property?

Open problems and further topics

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 2 / 35

Outline of the talk

Input-driven PDAs: historical background and definitions
I Other equivalent models

Nondeterministic IDPDA: Size blow-up of determinization

Unambiguous nondeterminism
I nondeterministic −→ unambiguous −→ deterministic

Limited nondeterminism

I k-path NIDPDA and multiple entry DIDPDA
I Determinizing k-path NIDPDAs

F lower bounds for size blow-up
F nondeterministic −→ k-path −→ deterministic

I Decision problems
F Does a given NIDPDA have the k-path property?

Open problems and further topics

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 2 / 35

Outline of the talk

Input-driven PDAs: historical background and definitions
I Other equivalent models

Nondeterministic IDPDA: Size blow-up of determinization

Unambiguous nondeterminism
I nondeterministic −→ unambiguous −→ deterministic

Limited nondeterminism

I k-path NIDPDA and multiple entry DIDPDA
I Determinizing k-path NIDPDAs

F lower bounds for size blow-up
F nondeterministic −→ k-path −→ deterministic

I Decision problems
F Does a given NIDPDA have the k-path property?

Open problems and further topics

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 2 / 35

Outline of the talk

Input-driven PDAs: historical background and definitions
I Other equivalent models

Nondeterministic IDPDA: Size blow-up of determinization

Unambiguous nondeterminism
I nondeterministic −→ unambiguous −→ deterministic

Limited nondeterminism
I k-path NIDPDA and multiple entry DIDPDA

I Determinizing k-path NIDPDAs
F lower bounds for size blow-up
F nondeterministic −→ k-path −→ deterministic

I Decision problems
F Does a given NIDPDA have the k-path property?

Open problems and further topics

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 2 / 35

Outline of the talk

Input-driven PDAs: historical background and definitions
I Other equivalent models

Nondeterministic IDPDA: Size blow-up of determinization

Unambiguous nondeterminism
I nondeterministic −→ unambiguous −→ deterministic

Limited nondeterminism
I k-path NIDPDA and multiple entry DIDPDA
I Determinizing k-path NIDPDAs

F lower bounds for size blow-up
F nondeterministic −→ k-path −→ deterministic

I Decision problems
F Does a given NIDPDA have the k-path property?

Open problems and further topics

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 2 / 35

Outline of the talk

Input-driven PDAs: historical background and definitions
I Other equivalent models

Nondeterministic IDPDA: Size blow-up of determinization

Unambiguous nondeterminism
I nondeterministic −→ unambiguous −→ deterministic

Limited nondeterminism
I k-path NIDPDA and multiple entry DIDPDA
I Determinizing k-path NIDPDAs

F lower bounds for size blow-up
F nondeterministic −→ k-path −→ deterministic

I Decision problems
F Does a given NIDPDA have the k-path property?

Open problems and further topics

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 2 / 35

Outline of the talk

Input-driven PDAs: historical background and definitions
I Other equivalent models

Nondeterministic IDPDA: Size blow-up of determinization

Unambiguous nondeterminism
I nondeterministic −→ unambiguous −→ deterministic

Limited nondeterminism
I k-path NIDPDA and multiple entry DIDPDA
I Determinizing k-path NIDPDAs

F lower bounds for size blow-up
F nondeterministic −→ k-path −→ deterministic

I Decision problems
F Does a given NIDPDA have the k-path property?

Open problems and further topics

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 2 / 35

Preliminaries

A pushdown automaton reads input left-to-right and has access to
finite-state memory and a pushdown stack.

Each operation either reads a symbol from the stack (pop), pushes a
string to the top of the stack (push) or does not change the stack.
(Additionally, a PDA may have ε-transitions.)

Input-driven computation: the input symbol determines whether the
machines pushes or pops the stack, or does not touch the stack.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 3 / 35

Why IDPDA?

every nondeterministic input-driven automaton (NIDPDA) can be
determinized

I a (general) nondeterministic PDA does not have an equivalent
deterministic PDA

IDPDA retain many of the desirable closure and decision properties of
finite automata

I languages recognized by nondeterministic PDAs are not closed under
intersection/complement

I equivalence (inclusion) of nondeterministic (deterministic) PDAs is
undecidable

Next we’ll define IDPDA computations and after that will summarize
basic IDPDA decision properties.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 4 / 35

Why IDPDA?

every nondeterministic input-driven automaton (NIDPDA) can be
determinized

I a (general) nondeterministic PDA does not have an equivalent
deterministic PDA

IDPDA retain many of the desirable closure and decision properties of
finite automata

I languages recognized by nondeterministic PDAs are not closed under
intersection/complement

I equivalence (inclusion) of nondeterministic (deterministic) PDAs is
undecidable

Next we’ll define IDPDA computations and after that will summarize
basic IDPDA decision properties.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 4 / 35

Why IDPDA?

every nondeterministic input-driven automaton (NIDPDA) can be
determinized

I a (general) nondeterministic PDA does not have an equivalent
deterministic PDA

IDPDA retain many of the desirable closure and decision properties of
finite automata

I languages recognized by nondeterministic PDAs are not closed under
intersection/complement

I equivalence (inclusion) of nondeterministic (deterministic) PDAs is
undecidable

Next we’ll define IDPDA computations and after that will summarize
basic IDPDA decision properties.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 4 / 35

Why IDPDA?

every nondeterministic input-driven automaton (NIDPDA) can be
determinized

I a (general) nondeterministic PDA does not have an equivalent
deterministic PDA

IDPDA retain many of the desirable closure and decision properties of
finite automata

I languages recognized by nondeterministic PDAs are not closed under
intersection/complement

I equivalence (inclusion) of nondeterministic (deterministic) PDAs is
undecidable

Next we’ll define IDPDA computations and after that will summarize
basic IDPDA decision properties.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 4 / 35

Why IDPDA?

every nondeterministic input-driven automaton (NIDPDA) can be
determinized

I a (general) nondeterministic PDA does not have an equivalent
deterministic PDA

IDPDA retain many of the desirable closure and decision properties of
finite automata

I languages recognized by nondeterministic PDAs are not closed under
intersection/complement

I equivalence (inclusion) of nondeterministic (deterministic) PDAs is
undecidable

Next we’ll define IDPDA computations and after that will summarize
basic IDPDA decision properties.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 4 / 35

Definition: Input-driven pushdown automata

Σ = Σ+1 ∪ Σ0 ∪ Σ−1: input alphabet;

Q: finite set of states;

q0 ∈ Q: initial state;

Γ: stack alphabet;

⊥ ∈ Γ: bottom stack symbol;

δ< : Q → Q × Γ, for each < ∈ Σ+1;

δc : Q → Q, for each c ∈ Σ0.

δ> : Q × Γ→ Q, for each > ∈ Σ−1;
I ⊥ is never popped.

F ⊆ Q: accepting states.

q

w

α

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 5 / 35

Definition: Input-driven pushdown automata

Σ = Σ+1 ∪ Σ0 ∪ Σ−1: input alphabet;

Q: finite set of states;

q0 ∈ Q: initial state;

Γ: stack alphabet;

⊥ ∈ Γ: bottom stack symbol;

δ< : Q → Q × Γ, for each < ∈ Σ+1;

δc : Q → Q, for each c ∈ Σ0.

δ> : Q × Γ→ Q, for each > ∈ Σ−1;
I ⊥ is never popped.

F ⊆ Q: accepting states.

q

w

α

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 5 / 35

Definition: Input-driven pushdown automata

Σ = Σ+1 ∪ Σ0 ∪ Σ−1: input alphabet;

Q: finite set of states;

q0 ∈ Q: initial state;

Γ: stack alphabet;

⊥ ∈ Γ: bottom stack symbol;

δ< : Q → Q × Γ, for each < ∈ Σ+1;

δc : Q → Q, for each c ∈ Σ0.

δ> : Q × Γ→ Q, for each > ∈ Σ−1;
I ⊥ is never popped.

F ⊆ Q: accepting states.

q

w

α

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 5 / 35

Definition: Input-driven pushdown automata

Σ = Σ+1 ∪ Σ0 ∪ Σ−1: input alphabet;

Q: finite set of states;

q0 ∈ Q: initial state;

Γ: stack alphabet;

⊥ ∈ Γ: bottom stack symbol;

δ< : Q → Q × Γ, for each < ∈ Σ+1;

δc : Q → Q, for each c ∈ Σ0.

δ> : Q × Γ→ Q, for each > ∈ Σ−1;
I ⊥ is never popped.

F ⊆ Q: accepting states.

q

w

α

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 5 / 35

Definition: Input-driven pushdown automata

Σ = Σ+1 ∪ Σ0 ∪ Σ−1: input alphabet;

Q: finite set of states;

q0 ∈ Q: initial state;

Γ: stack alphabet;

⊥ ∈ Γ: bottom stack symbol;

δ< : Q → Q × Γ, for each < ∈ Σ+1;

δc : Q → Q, for each c ∈ Σ0.

δ> : Q × Γ→ Q, for each > ∈ Σ−1;
I ⊥ is never popped.

F ⊆ Q: accepting states.

q

w

α

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 5 / 35

Definition: Input-driven pushdown automata

Σ = Σ+1 ∪ Σ0 ∪ Σ−1: input alphabet;

Q: finite set of states;

q0 ∈ Q: initial state;

Γ: stack alphabet;

⊥ ∈ Γ: bottom stack symbol;

δ< : Q → Q × Γ, for each < ∈ Σ+1;

δc : Q → Q, for each c ∈ Σ0.

δ> : Q × Γ→ Q, for each > ∈ Σ−1;
I ⊥ is never popped.

F ⊆ Q: accepting states.

q

c w

α

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 5 / 35

Definition: Input-driven pushdown automata

Σ = Σ+1 ∪ Σ0 ∪ Σ−1: input alphabet;

Q: finite set of states;

q0 ∈ Q: initial state;

Γ: stack alphabet;

⊥ ∈ Γ: bottom stack symbol;

δ< : Q → Q × Γ, for each < ∈ Σ+1;

δc : Q → Q, for each c ∈ Σ0.

δ> : Q × Γ→ Q, for each > ∈ Σ−1;
I ⊥ is never popped.

F ⊆ Q: accepting states.

q1

c w

α
γ

>

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 5 / 35

Definition: Input-driven pushdown automata

Σ = Σ+1 ∪ Σ0 ∪ Σ−1: input alphabet;

Q: finite set of states;

q0 ∈ Q: initial state;

Γ: stack alphabet;

⊥ ∈ Γ: bottom stack symbol;

δ< : Q → Q × Γ, for each < ∈ Σ+1;

δc : Q → Q, for each c ∈ Σ0.

δ> : Q × Γ→ Q, for each > ∈ Σ−1;
I ⊥ is never popped.

F ⊆ Q: accepting states.

q2

w

α
γ

>

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 5 / 35

Definition: Input-driven pushdown automata

Σ = Σ+1 ∪ Σ0 ∪ Σ−1: input alphabet;

Q: finite set of states;

q0 ∈ Q: initial state;

Γ: stack alphabet;

⊥ ∈ Γ: bottom stack symbol;

δ< : Q → Q × Γ, for each < ∈ Σ+1;

δc : Q → Q, for each c ∈ Σ0.

δ> : Q × Γ→ Q, for each > ∈ Σ−1;
I ⊥ is never popped.

F ⊆ Q: accepting states.

q3

w

α

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 5 / 35

Computation of an IDPDA

a <
b

> c <
<

a b
> c

> d
γ γ γ' γ'

γ''
γ'
γ''

γ' γ'γ'
γ''

q6
q q1

q2 q3
q4 q5 q12 q'

q7 q9
q10 q11

q8

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 6 / 35

Research on IDPDAs

Languages recognized in space log2 n
log log n and poly time on TM

(Mehlhorn, ICALP 1980).

. . . in space log n and time n2 log n (von Braunmühl, Verbeek, 1983).

I Alternative proof (Rytter, 1986).

. . . in NC1 (Dymond, 1988).

Language-theoretic study (Alur, Madhusudan, STOC 2004).
I Rediscovered as “visibly pushdown automata”.

I Reinterpreted as “nested word automata” (Alur, Madhusudan, DLT
2006).

I Descriptional complexity

F Lower bound on size blow-up of determinization

I Closure under most standard language operations.

Much ongoing research – motivated by new applications that use data
with linear/hierarchical structure

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 7 / 35

Research on IDPDAs

Languages recognized in space log2 n
log log n and poly time on TM

(Mehlhorn, ICALP 1980).

. . . in space log n and time n2 log n (von Braunmühl, Verbeek, 1983).

I Alternative proof (Rytter, 1986).

. . . in NC1 (Dymond, 1988).

Language-theoretic study (Alur, Madhusudan, STOC 2004).
I Rediscovered as “visibly pushdown automata”.

I Reinterpreted as “nested word automata” (Alur, Madhusudan, DLT
2006).

I Descriptional complexity

F Lower bound on size blow-up of determinization

I Closure under most standard language operations.

Much ongoing research – motivated by new applications that use data
with linear/hierarchical structure

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 7 / 35

Research on IDPDAs

Languages recognized in space log2 n
log log n and poly time on TM

(Mehlhorn, ICALP 1980).

. . . in space log n and time n2 log n (von Braunmühl, Verbeek, 1983).
I Alternative proof (Rytter, 1986).

. . . in NC1 (Dymond, 1988).

Language-theoretic study (Alur, Madhusudan, STOC 2004).
I Rediscovered as “visibly pushdown automata”.

I Reinterpreted as “nested word automata” (Alur, Madhusudan, DLT
2006).

I Descriptional complexity

F Lower bound on size blow-up of determinization

I Closure under most standard language operations.

Much ongoing research – motivated by new applications that use data
with linear/hierarchical structure

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 7 / 35

Research on IDPDAs

Languages recognized in space log2 n
log log n and poly time on TM

(Mehlhorn, ICALP 1980).

. . . in space log n and time n2 log n (von Braunmühl, Verbeek, 1983).
I Alternative proof (Rytter, 1986).

. . . in NC1 (Dymond, 1988).

Language-theoretic study (Alur, Madhusudan, STOC 2004).
I Rediscovered as “visibly pushdown automata”.

I Reinterpreted as “nested word automata” (Alur, Madhusudan, DLT
2006).

I Descriptional complexity

F Lower bound on size blow-up of determinization

I Closure under most standard language operations.

Much ongoing research – motivated by new applications that use data
with linear/hierarchical structure

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 7 / 35

Research on IDPDAs

Languages recognized in space log2 n
log log n and poly time on TM

(Mehlhorn, ICALP 1980).

. . . in space log n and time n2 log n (von Braunmühl, Verbeek, 1983).
I Alternative proof (Rytter, 1986).

. . . in NC1 (Dymond, 1988).

Language-theoretic study (Alur, Madhusudan, STOC 2004).
I Rediscovered as “visibly pushdown automata”.

I Reinterpreted as “nested word automata” (Alur, Madhusudan, DLT
2006).

I Descriptional complexity

F Lower bound on size blow-up of determinization

I Closure under most standard language operations.

Much ongoing research – motivated by new applications that use data
with linear/hierarchical structure

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 7 / 35

Research on IDPDAs

Languages recognized in space log2 n
log log n and poly time on TM

(Mehlhorn, ICALP 1980).

. . . in space log n and time n2 log n (von Braunmühl, Verbeek, 1983).
I Alternative proof (Rytter, 1986).

. . . in NC1 (Dymond, 1988).

Language-theoretic study (Alur, Madhusudan, STOC 2004).
I Rediscovered as “visibly pushdown automata”.
I Reinterpreted as “nested word automata” (Alur, Madhusudan, DLT

2006).

I Descriptional complexity

F Lower bound on size blow-up of determinization

I Closure under most standard language operations.

Much ongoing research – motivated by new applications that use data
with linear/hierarchical structure

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 7 / 35

Research on IDPDAs

Languages recognized in space log2 n
log log n and poly time on TM

(Mehlhorn, ICALP 1980).

. . . in space log n and time n2 log n (von Braunmühl, Verbeek, 1983).
I Alternative proof (Rytter, 1986).

. . . in NC1 (Dymond, 1988).

Language-theoretic study (Alur, Madhusudan, STOC 2004).
I Rediscovered as “visibly pushdown automata”.
I Reinterpreted as “nested word automata” (Alur, Madhusudan, DLT

2006).
I Descriptional complexity

F Lower bound on size blow-up of determinization

I Closure under most standard language operations.

Much ongoing research – motivated by new applications that use data
with linear/hierarchical structure

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 7 / 35

Research on IDPDAs

Languages recognized in space log2 n
log log n and poly time on TM

(Mehlhorn, ICALP 1980).

. . . in space log n and time n2 log n (von Braunmühl, Verbeek, 1983).
I Alternative proof (Rytter, 1986).

. . . in NC1 (Dymond, 1988).

Language-theoretic study (Alur, Madhusudan, STOC 2004).
I Rediscovered as “visibly pushdown automata”.
I Reinterpreted as “nested word automata” (Alur, Madhusudan, DLT

2006).
I Descriptional complexity

F Lower bound on size blow-up of determinization

I Closure under most standard language operations.

Much ongoing research – motivated by new applications that use data
with linear/hierarchical structure

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 7 / 35

Research on IDPDAs

Languages recognized in space log2 n
log log n and poly time on TM

(Mehlhorn, ICALP 1980).

. . . in space log n and time n2 log n (von Braunmühl, Verbeek, 1983).
I Alternative proof (Rytter, 1986).

. . . in NC1 (Dymond, 1988).

Language-theoretic study (Alur, Madhusudan, STOC 2004).
I Rediscovered as “visibly pushdown automata”.
I Reinterpreted as “nested word automata” (Alur, Madhusudan, DLT

2006).
I Descriptional complexity

F Lower bound on size blow-up of determinization

I Closure under most standard language operations.

Much ongoing research – motivated by new applications that use data
with linear/hierarchical structure

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 7 / 35

Research on IDPDAs

Languages recognized in space log2 n
log log n and poly time on TM

(Mehlhorn, ICALP 1980).

. . . in space log n and time n2 log n (von Braunmühl, Verbeek, 1983).
I Alternative proof (Rytter, 1986).

. . . in NC1 (Dymond, 1988).

Language-theoretic study (Alur, Madhusudan, STOC 2004).
I Rediscovered as “visibly pushdown automata”.
I Reinterpreted as “nested word automata” (Alur, Madhusudan, DLT

2006).
I Descriptional complexity

F Lower bound on size blow-up of determinization

I Closure under most standard language operations.

Much ongoing research – motivated by new applications that use data
with linear/hierarchical structure

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 7 / 35

Closure properties of central language families

∪ ∩ Complement Concatenation Kleene-*

Regular Yes Yes Yes Yes Yes

CFL Yes No No Yes Yes

DCFL No No Yes No No

IDPDA Yes Yes Yes Yes Yes

(D)CFL = (deterministic) context-free languages

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 8 / 35

Summary of decision properties

Membership Properties of a language
fixed uniform emptiness equality inclusion

DFA regular L NL NL NL
NFA regular NL NL PSPACE PSPACE
DIDPDA in NC1 in SC2 P P P
NIDPDA in NC1 in P P EXPTIME EXPTIME
DPDA in NC2 ∩ SC2 P P decidable co-r.e.
CF in NC2 P P co-r.e. co-r.e.

Recent comprehensive survey:
A. Okhotin, K. Salomaa, Complexity of Input-Driven Pushdown
Automata, SIGACT News Complexity Theory Column 82 (Lane A.
Hemaspaandra, Ed.), vol. 45, no. 2, June 2014, pp. 46–67

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 9 / 35

Summary of decision properties

Membership Properties of a language
fixed uniform emptiness equality inclusion

DFA regular L NL NL NL
NFA regular NL NL PSPACE PSPACE
DIDPDA in NC1 in SC2 P P P
NIDPDA in NC1 in P P EXPTIME EXPTIME
DPDA in NC2 ∩ SC2 P P decidable co-r.e.
CF in NC2 P P co-r.e. co-r.e.

Recent comprehensive survey:
A. Okhotin, K. Salomaa, Complexity of Input-Driven Pushdown
Automata, SIGACT News Complexity Theory Column 82 (Lane A.
Hemaspaandra, Ed.), vol. 45, no. 2, June 2014, pp. 46–67

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 9 / 35

The big picture: IDPDAs among formal grammars

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 10 / 35

Equivalent models: pushdown forest automata

Pushdown forest automaton (Neumann & Seidl 1998)
I traverses input tree in depth-first left-to-right order
I machine pushes onto the stack when going down to the leftmost child
I pops from the stack when returning from the rightmost child

Equivalent to IDPDA (Gauwin, Niehren & Roos, 2008)

Recognize only the class of regular tree languages. Are exponentially
more succinct than ordinary bottom-up tree automata

Earlier related work:
I Engelfriet, Rozenberg & Slutzki (1980): tree-walking transducers with

synchronized pushdown
I Kamimura & Slutzki (1981): nondeterministic and deterministic

variants of such graph walking automata with a synchronized
pushdown are equivalent

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 11 / 35

Equivalent models: Nested word automata
(Alur and Madhusudan, DLT 2006)

A nested word is a tagged word with a hierarchical structure that
connects call symbol occurrences to return symbol occurrences

A nested word automaton “sends” finite state information both along
the linear and the hierarchical edges

I Equivalent to an IDPDA

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 12 / 35

Why nested words?

Nested word automata used e.g. in XML document processing and
model checking

I Retains many desirable properties of the classical regular languages

Advantages over trees in applications like document processing:
I Word operations like prefix, suffix and concatenation do not have clear

analogoues as tree operations
I Trees do not have an explicit linear ordering of all nodes

F Descriptional complexity: for tree automata queries that refer to the
global linear order can be more expensive

In the following we use the terminology associated with IDPDAs. The
model is equivalent to a finite automaton operating on nested words.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 13 / 35

Determinizing nondeterministic IDPDAs (NIDPDA)

Theorem (von Braunmühl & Verbeek (1983), Alur & Madhusudan
(2006))

Every NIDPDA of size n has a deterministic IDPDA of size 2O(n2).

Theorem (Alur, Madhusudan, 2006)

A DIDPDA equivalent to an NIDPDA of size n needs, in the worst case,
2Ω(n2) states.

The more precise constants in the lower bound remain open.
I With a constant alphabet can reach lower bound 2

1
9 n

2

I Linear size alphabet can reach 2
1
4 n

2

I Exponential size alphabet can reach 2n2

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 14 / 35

Determinizing nondeterministic IDPDAs (NIDPDA)

Theorem (von Braunmühl & Verbeek (1983), Alur & Madhusudan
(2006))

Every NIDPDA of size n has a deterministic IDPDA of size 2O(n2).

Theorem (Alur, Madhusudan, 2006)

A DIDPDA equivalent to an NIDPDA of size n needs, in the worst case,
2Ω(n2) states.

The more precise constants in the lower bound remain open.
I With a constant alphabet can reach lower bound 2

1
9 n

2

I Linear size alphabet can reach 2
1
4 n

2

I Exponential size alphabet can reach 2n2

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 14 / 35

Determinizing nondeterministic IDPDAs (NIDPDA)

Theorem (von Braunmühl & Verbeek (1983), Alur & Madhusudan
(2006))

Every NIDPDA of size n has a deterministic IDPDA of size 2O(n2).

Theorem (Alur, Madhusudan, 2006)

A DIDPDA equivalent to an NIDPDA of size n needs, in the worst case,
2Ω(n2) states.

The more precise constants in the lower bound remain open.
I With a constant alphabet can reach lower bound 2

1
9 n

2

I Linear size alphabet can reach 2
1
4 n

2

I Exponential size alphabet can reach 2n2

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 14 / 35

Determinizing nondeterministic IDPDAs (NIDPDA)

Theorem (von Braunmühl & Verbeek (1983), Alur & Madhusudan
(2006))

Every NIDPDA of size n has a deterministic IDPDA of size 2O(n2).

Theorem (Alur, Madhusudan, 2006)

A DIDPDA equivalent to an NIDPDA of size n needs, in the worst case,
2Ω(n2) states.

The more precise constants in the lower bound remain open.
I With a constant alphabet can reach lower bound 2

1
9 n

2

I Linear size alphabet can reach 2
1
4 n

2

I Exponential size alphabet can reach 2n2

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 14 / 35

Determinizing nondeterministic IDPDAs (NIDPDA)

Theorem (von Braunmühl & Verbeek (1983), Alur & Madhusudan
(2006))

Every NIDPDA of size n has a deterministic IDPDA of size 2O(n2).

Theorem (Alur, Madhusudan, 2006)

A DIDPDA equivalent to an NIDPDA of size n needs, in the worst case,
2Ω(n2) states.

The more precise constants in the lower bound remain open.
I With a constant alphabet can reach lower bound 2

1
9 n

2

I Linear size alphabet can reach 2
1
4 n

2

I Exponential size alphabet can reach 2n2

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 14 / 35

Determinizing NIDPDAs: the number of stack symbols

The determinization construction does not depend on the number of
stack symbols

I NIDPDA with n states → DIDPDA with 2n2

states and O(2n2

) stack
symbols

In the lower bound construction, the equivalent DIDPDA does not
use the stack, and could be replaced by a DFA of size 2Ω(n2)

X More refined lower bound for determinizing an NIDPDA.

Theorem (Okhotin, Piao & Salomaa, 2012)

For all k , h ∈ N, k ≤ h, there exists a language Lk,h recognized by an
NIDPDA with O(h) states and O(k) stack symbols such that any
DIDPDA for Lk,h needs Ω(2k·h) states and Ω(2k

2
) stack symbols.

Tight bound with respect to both the number of states and the
number of stack symbols (within a constant factor)

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 15 / 35

Determinizing NIDPDAs: the number of stack symbols

The determinization construction does not depend on the number of
stack symbols

I NIDPDA with n states → DIDPDA with 2n2

states and O(2n2

) stack
symbols

In the lower bound construction, the equivalent DIDPDA does not
use the stack, and could be replaced by a DFA of size 2Ω(n2)

X More refined lower bound for determinizing an NIDPDA.

Theorem (Okhotin, Piao & Salomaa, 2012)

For all k , h ∈ N, k ≤ h, there exists a language Lk,h recognized by an
NIDPDA with O(h) states and O(k) stack symbols such that any
DIDPDA for Lk,h needs Ω(2k·h) states and Ω(2k

2
) stack symbols.

Tight bound with respect to both the number of states and the
number of stack symbols (within a constant factor)

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 15 / 35

Determinizing NIDPDAs: the number of stack symbols

The determinization construction does not depend on the number of
stack symbols

I NIDPDA with n states → DIDPDA with 2n2

states and O(2n2

) stack
symbols

In the lower bound construction, the equivalent DIDPDA does not
use the stack, and could be replaced by a DFA of size 2Ω(n2)

X More refined lower bound for determinizing an NIDPDA.

Theorem (Okhotin, Piao & Salomaa, 2012)

For all k , h ∈ N, k ≤ h, there exists a language Lk,h recognized by an
NIDPDA with O(h) states and O(k) stack symbols such that any
DIDPDA for Lk,h needs Ω(2k·h) states and Ω(2k

2
) stack symbols.

Tight bound with respect to both the number of states and the
number of stack symbols (within a constant factor)

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 15 / 35

Determinizing NIDPDAs: the number of stack symbols

The determinization construction does not depend on the number of
stack symbols

I NIDPDA with n states → DIDPDA with 2n2

states and O(2n2

) stack
symbols

In the lower bound construction, the equivalent DIDPDA does not
use the stack, and could be replaced by a DFA of size 2Ω(n2)

X More refined lower bound for determinizing an NIDPDA.

Theorem (Okhotin, Piao & Salomaa, 2012)

For all k , h ∈ N, k ≤ h, there exists a language Lk,h recognized by an
NIDPDA with O(h) states and O(k) stack symbols such that any
DIDPDA for Lk,h needs Ω(2k·h) states and Ω(2k

2
) stack symbols.

Tight bound with respect to both the number of states and the
number of stack symbols (within a constant factor)

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 15 / 35

Determinizing NIDPDAs: the number of stack symbols

The determinization construction does not depend on the number of
stack symbols

I NIDPDA with n states → DIDPDA with 2n2

states and O(2n2

) stack
symbols

In the lower bound construction, the equivalent DIDPDA does not
use the stack, and could be replaced by a DFA of size 2Ω(n2)

X More refined lower bound for determinizing an NIDPDA.

Theorem (Okhotin, Piao & Salomaa, 2012)

For all k , h ∈ N, k ≤ h, there exists a language Lk,h recognized by an
NIDPDA with O(h) states and O(k) stack symbols such that any
DIDPDA for Lk,h needs Ω(2k·h) states and Ω(2k

2
) stack symbols.

Tight bound with respect to both the number of states and the
number of stack symbols (within a constant factor)

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 15 / 35

The lower bound due to Alur and Madhusudan

Lower bound: Let Σ+1 = {<}, Σ0 = {0, 1,#}, Σ−1 = {>}, consider all

< . . . uv . . . v>u

with u, v ∈ {0, 1}log n. (markers # omitted here and later)

O(n)-state NIDPDA guesses u and pushes it.
IDPDA has to remember all pairs (u, v).

Upper bound: Remember sets of pairs (q, q′) on each level of brackets:

. . . < . . .︸︷︷︸
q→q′

> . . .

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 16 / 35

The lower bound due to Alur and Madhusudan

Lower bound: Let Σ+1 = {<}, Σ0 = {0, 1,#}, Σ−1 = {>}, consider all

< . . . uv . . . v>u

with u, v ∈ {0, 1}log n. (markers # omitted here and later)

O(n)-state NIDPDA guesses u and pushes it.

IDPDA has to remember all pairs (u, v).

Upper bound: Remember sets of pairs (q, q′) on each level of brackets:

. . . < . . .︸︷︷︸
q→q′

> . . .

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 16 / 35

The lower bound due to Alur and Madhusudan

Lower bound: Let Σ+1 = {<}, Σ0 = {0, 1,#}, Σ−1 = {>}, consider all

< . . . uv . . . v>u

with u, v ∈ {0, 1}log n. (markers # omitted here and later)

O(n)-state NIDPDA guesses u and pushes it.
IDPDA has to remember all pairs (u, v).

Upper bound: Remember sets of pairs (q, q′) on each level of brackets:

. . . < . . .︸︷︷︸
q→q′

> . . .

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 16 / 35

The lower bound due to Alur and Madhusudan

Lower bound: Let Σ+1 = {<}, Σ0 = {0, 1,#}, Σ−1 = {>}, consider all

< . . . uv . . . v>u

with u, v ∈ {0, 1}log n. (markers # omitted here and later)

O(n)-state NIDPDA guesses u and pushes it.
IDPDA has to remember all pairs (u, v).

Upper bound: Remember sets of pairs (q, q′) on each level of brackets:

. . . < . . .︸︷︷︸
q→q′

> . . .

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 16 / 35

Unambiguous Nondeterminism
Commonly used form of limited nondeterminism

“If a string is accepted, it has a unique accepting computation”.

In complexity theory:

L ⊆ UL ⊆ NL P ⊆ UP ⊆ NP

In finite automata: DFA → UFA → NFA.

I NFA–DFA tradeoff: 2n (Lupanov, 1963).
I UFA–DFA and NFA–UFA tradeoffs: 2n and 2n − 1 (Hing Leung, 2005).
I UFA–DFA and NFA–UFA tradeoffs for unary alphabet:

eΘ(
3√
n ln2 n) and e(1+o(1))

√
n ln n (Okhotin, 2010).

What about unambiguous IDPDAs (UIDPDA)?

Theorem (Okhotin, Salomaa 2011)

The worst-case UIDPDA–DIDPDA and NIDPDA–UIDPDA trade-offs are
both 2Θ(n2).

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 17 / 35

Unambiguous Nondeterminism
Commonly used form of limited nondeterminism

“If a string is accepted, it has a unique accepting computation”.

In complexity theory:

L ⊆ UL ⊆ NL P ⊆ UP ⊆ NP

In finite automata: DFA → UFA → NFA.

I NFA–DFA tradeoff: 2n (Lupanov, 1963).
I UFA–DFA and NFA–UFA tradeoffs: 2n and 2n − 1 (Hing Leung, 2005).
I UFA–DFA and NFA–UFA tradeoffs for unary alphabet:

eΘ(
3√
n ln2 n) and e(1+o(1))

√
n ln n (Okhotin, 2010).

What about unambiguous IDPDAs (UIDPDA)?

Theorem (Okhotin, Salomaa 2011)

The worst-case UIDPDA–DIDPDA and NIDPDA–UIDPDA trade-offs are
both 2Θ(n2).

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 17 / 35

Unambiguous Nondeterminism
Commonly used form of limited nondeterminism

“If a string is accepted, it has a unique accepting computation”.

In complexity theory:

L ⊆ UL ⊆ NL P ⊆ UP ⊆ NP

In finite automata: DFA → UFA → NFA.

I NFA–DFA tradeoff: 2n (Lupanov, 1963).
I UFA–DFA and NFA–UFA tradeoffs: 2n and 2n − 1 (Hing Leung, 2005).
I UFA–DFA and NFA–UFA tradeoffs for unary alphabet:

eΘ(
3√
n ln2 n) and e(1+o(1))

√
n ln n (Okhotin, 2010).

What about unambiguous IDPDAs (UIDPDA)?

Theorem (Okhotin, Salomaa 2011)

The worst-case UIDPDA–DIDPDA and NIDPDA–UIDPDA trade-offs are
both 2Θ(n2).

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 17 / 35

Unambiguous Nondeterminism
Commonly used form of limited nondeterminism

“If a string is accepted, it has a unique accepting computation”.

In complexity theory:

L ⊆ UL ⊆ NL P ⊆ UP ⊆ NP

In finite automata: DFA → UFA → NFA.
I NFA–DFA tradeoff: 2n (Lupanov, 1963).

I UFA–DFA and NFA–UFA tradeoffs: 2n and 2n − 1 (Hing Leung, 2005).
I UFA–DFA and NFA–UFA tradeoffs for unary alphabet:

eΘ(
3√
n ln2 n) and e(1+o(1))

√
n ln n (Okhotin, 2010).

What about unambiguous IDPDAs (UIDPDA)?

Theorem (Okhotin, Salomaa 2011)

The worst-case UIDPDA–DIDPDA and NIDPDA–UIDPDA trade-offs are
both 2Θ(n2).

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 17 / 35

Unambiguous Nondeterminism
Commonly used form of limited nondeterminism

“If a string is accepted, it has a unique accepting computation”.

In complexity theory:

L ⊆ UL ⊆ NL P ⊆ UP ⊆ NP

In finite automata: DFA → UFA → NFA.
I NFA–DFA tradeoff: 2n (Lupanov, 1963).
I UFA–DFA and NFA–UFA tradeoffs: 2n and 2n − 1 (Hing Leung, 2005).

I UFA–DFA and NFA–UFA tradeoffs for unary alphabet:

eΘ(
3√
n ln2 n) and e(1+o(1))

√
n ln n (Okhotin, 2010).

What about unambiguous IDPDAs (UIDPDA)?

Theorem (Okhotin, Salomaa 2011)

The worst-case UIDPDA–DIDPDA and NIDPDA–UIDPDA trade-offs are
both 2Θ(n2).

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 17 / 35

Unambiguous Nondeterminism
Commonly used form of limited nondeterminism

“If a string is accepted, it has a unique accepting computation”.

In complexity theory:

L ⊆ UL ⊆ NL P ⊆ UP ⊆ NP

In finite automata: DFA → UFA → NFA.
I NFA–DFA tradeoff: 2n (Lupanov, 1963).
I UFA–DFA and NFA–UFA tradeoffs: 2n and 2n − 1 (Hing Leung, 2005).
I UFA–DFA and NFA–UFA tradeoffs for unary alphabet:

eΘ(
3√
n ln2 n) and e(1+o(1))

√
n ln n (Okhotin, 2010).

What about unambiguous IDPDAs (UIDPDA)?

Theorem (Okhotin, Salomaa 2011)

The worst-case UIDPDA–DIDPDA and NIDPDA–UIDPDA trade-offs are
both 2Θ(n2).

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 17 / 35

Unambiguous Nondeterminism
Commonly used form of limited nondeterminism

“If a string is accepted, it has a unique accepting computation”.

In complexity theory:

L ⊆ UL ⊆ NL P ⊆ UP ⊆ NP

In finite automata: DFA → UFA → NFA.
I NFA–DFA tradeoff: 2n (Lupanov, 1963).
I UFA–DFA and NFA–UFA tradeoffs: 2n and 2n − 1 (Hing Leung, 2005).
I UFA–DFA and NFA–UFA tradeoffs for unary alphabet:

eΘ(
3√
n ln2 n) and e(1+o(1))

√
n ln n (Okhotin, 2010).

What about unambiguous IDPDAs (UIDPDA)?

Theorem (Okhotin, Salomaa 2011)

The worst-case UIDPDA–DIDPDA and NIDPDA–UIDPDA trade-offs are
both 2Θ(n2).

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 17 / 35

Unambiguous Nondeterminism
Commonly used form of limited nondeterminism

“If a string is accepted, it has a unique accepting computation”.

In complexity theory:

L ⊆ UL ⊆ NL P ⊆ UP ⊆ NP

In finite automata: DFA → UFA → NFA.
I NFA–DFA tradeoff: 2n (Lupanov, 1963).
I UFA–DFA and NFA–UFA tradeoffs: 2n and 2n − 1 (Hing Leung, 2005).
I UFA–DFA and NFA–UFA tradeoffs for unary alphabet:

eΘ(
3√
n ln2 n) and e(1+o(1))

√
n ln n (Okhotin, 2010).

What about unambiguous IDPDAs (UIDPDA)?

Theorem (Okhotin, Salomaa 2011)

The worst-case UIDPDA–DIDPDA and NIDPDA–UIDPDA trade-offs are
both 2Θ(n2).

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 17 / 35

UIDPDA to DIDPDA: 2Θ(n2)

Upper bound: known for NIDPDA → DIDPDA.

Let Σ+1 = {<}, Σ0 = {0, 1,#, $}, Σ−1 = {>}, consider all

<x0 . . . x`$v>u

with u, v ∈ {0, 1}log n, where the (v)2-th bit in x(u)2
is 1.

O(n)-state UIDPDA guesses u.

IDPDA has to remember x0, . . . , xn−1.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 18 / 35

UIDPDA to DIDPDA: 2Θ(n2)

Upper bound: known for NIDPDA → DIDPDA.

Let Σ+1 = {<}, Σ0 = {0, 1,#, $}, Σ−1 = {>}, consider all

<x0 . . . x`$v>u

with u, v ∈ {0, 1}log n, where the (v)2-th bit in x(u)2
is 1.

O(n)-state UIDPDA guesses u.

IDPDA has to remember x0, . . . , xn−1.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 18 / 35

UIDPDA to DIDPDA: 2Θ(n2)

Upper bound: known for NIDPDA → DIDPDA.

Let Σ+1 = {<}, Σ0 = {0, 1,#, $}, Σ−1 = {>}, consider all

<x0 . . . x`$v>u

with u, v ∈ {0, 1}log n, where the (v)2-th bit in x(u)2
is 1.

O(n)-state UIDPDA guesses u.

IDPDA has to remember x0, . . . , xn−1.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 18 / 35

UIDPDA to DIDPDA: 2Θ(n2)

Upper bound: known for NIDPDA → DIDPDA.

Let Σ+1 = {<}, Σ0 = {0, 1,#, $}, Σ−1 = {>}, consider all

<x0 . . . x`$v>u

with u, v ∈ {0, 1}log n, where the (v)2-th bit in x(u)2
is 1.

O(n)-state UIDPDA guesses u.

IDPDA has to remember x0, . . . , xn−1.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 18 / 35

NIDPDA to an unambiguous IDPDA
Lower bound method for unambiguous IDPDAs

Lemma (Schmidt, 1978)

Let L ⊆ Σ∗ and {(x1, y1), . . . , (xn, yn)} with xi , yi ∈ Σ∗.
Define M ∈ Zn×n by Mi ,j = 1 if xiyj ∈ L, and Mi ,j = 0 otherwise.
Then every UFA for L has

|Q| > rankM.

Lemma

Further assume that |x1|Σ+1 = . . . = |xn|Σ+1 = k.
Then every UIDPDA for L has

|Q| · |Γ|k > rankM.

To compute the rank, need a very simple matrix.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 19 / 35

NIDPDA to an unambiguous IDPDA
Lower bound method for unambiguous IDPDAs

Lemma (Schmidt, 1978)

Let L ⊆ Σ∗ and {(x1, y1), . . . , (xn, yn)} with xi , yi ∈ Σ∗.
Define M ∈ Zn×n by Mi ,j = 1 if xiyj ∈ L, and Mi ,j = 0 otherwise.
Then every UFA for L has

|Q| > rankM.

Lemma

Further assume that |x1|Σ+1 = . . . = |xn|Σ+1 = k.
Then every UIDPDA for L has

|Q| · |Γ|k > rankM.

To compute the rank, need a very simple matrix.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 19 / 35

NIDPDA to an unambiguous IDPDA
Lower bound method for unambiguous IDPDAs

Lemma (Schmidt, 1978)

Let L ⊆ Σ∗ and {(x1, y1), . . . , (xn, yn)} with xi , yi ∈ Σ∗.
Define M ∈ Zn×n by Mi ,j = 1 if xiyj ∈ L, and Mi ,j = 0 otherwise.
Then every UFA for L has

|Q| > rankM.

Lemma

Further assume that |x1|Σ+1 = . . . = |xn|Σ+1 = k.
Then every UIDPDA for L has

|Q| · |Γ|k > rankM.

To compute the rank, need a very simple matrix.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 19 / 35

NIDPDA to UIDPDA: 2Θ(n2)

Upper bound: known for NIDPDA → IDPDA.

Let Σ+1 = {<}, Σ0 = {0, 1,#, $}, Σ−1 = {>}, consider

< . . . uv . . . $. . . vu . . . >

(n different us and vs)

O(n)-state NIDPDA guesses u.

Every UIDPDA requires 2
n2

2 states.

I Arrange n2 pairs (u, v) into n2

2 pairs.

(u1, v1) ←→ (u′1, v
′
1)

...
(u n2

2

, v n2

2

) ←→ (u′
n2

2

, v ′
n2

2

)

I Choose one from each line:

xi = < all (u, v) chosen $ yi = all (u, v) not chosen >

I The matrix has full rank.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 20 / 35

NIDPDA to UIDPDA: 2Θ(n2)

Upper bound: known for NIDPDA → IDPDA.

Let Σ+1 = {<}, Σ0 = {0, 1,#, $}, Σ−1 = {>}, consider

< . . . uv . . . $. . . vu . . . >

(n different us and vs)

O(n)-state NIDPDA guesses u.

Every UIDPDA requires 2
n2

2 states.

I Arrange n2 pairs (u, v) into n2

2 pairs.

(u1, v1) ←→ (u′1, v
′
1)

...
(u n2

2

, v n2

2

) ←→ (u′
n2

2

, v ′
n2

2

)

I Choose one from each line:

xi = < all (u, v) chosen $ yi = all (u, v) not chosen >

I The matrix has full rank.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 20 / 35

NIDPDA to UIDPDA: 2Θ(n2)

Upper bound: known for NIDPDA → IDPDA.

Let Σ+1 = {<}, Σ0 = {0, 1,#, $}, Σ−1 = {>}, consider

< . . . uv . . . $. . . vu . . . >

(n different us and vs)

O(n)-state NIDPDA guesses u.

Every UIDPDA requires 2
n2

2 states.

I Arrange n2 pairs (u, v) into n2

2 pairs.

(u1, v1) ←→ (u′1, v
′
1)

...
(u n2

2

, v n2

2

) ←→ (u′
n2

2

, v ′
n2

2

)

I Choose one from each line:

xi = < all (u, v) chosen $ yi = all (u, v) not chosen >

I The matrix has full rank.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 20 / 35

NIDPDA to UIDPDA: 2Θ(n2)

Upper bound: known for NIDPDA → IDPDA.

Let Σ+1 = {<}, Σ0 = {0, 1,#, $}, Σ−1 = {>}, consider

< . . . uv . . . $. . . vu . . . >

(n different us and vs)

O(n)-state NIDPDA guesses u.

Every UIDPDA requires 2
n2

2 states.

I Arrange n2 pairs (u, v) into n2

2 pairs.

(u1, v1) ←→ (u′1, v
′
1)

...
(u n2

2

, v n2

2

) ←→ (u′
n2

2

, v ′
n2

2

)

I Choose one from each line:

xi = < all (u, v) chosen $ yi = all (u, v) not chosen >

I The matrix has full rank.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 20 / 35

NIDPDA to UIDPDA: 2Θ(n2)

Upper bound: known for NIDPDA → IDPDA.

Let Σ+1 = {<}, Σ0 = {0, 1,#, $}, Σ−1 = {>}, consider

< . . . uv . . . $. . . vu . . . >

(n different us and vs)

O(n)-state NIDPDA guesses u.

Every UIDPDA requires 2
n2

2 states.
I Arrange n2 pairs (u, v) into n2

2 pairs.

(u1, v1) ←→ (u′1, v
′
1)

...
(u n2

2

, v n2

2

) ←→ (u′
n2

2

, v ′
n2

2

)

I Choose one from each line:

xi = < all (u, v) chosen $ yi = all (u, v) not chosen >

I The matrix has full rank.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 20 / 35

NIDPDA to UIDPDA: 2Θ(n2)

Upper bound: known for NIDPDA → IDPDA.

Let Σ+1 = {<}, Σ0 = {0, 1,#, $}, Σ−1 = {>}, consider

< . . . uv . . . $. . . vu . . . >

(n different us and vs)

O(n)-state NIDPDA guesses u.

Every UIDPDA requires 2
n2

2 states.
I Arrange n2 pairs (u, v) into n2

2 pairs.

(u1, v1) ←→ (u′1, v
′
1)

...
(u n2

2

, v n2

2

) ←→ (u′
n2

2

, v ′
n2

2

)

I Choose one from each line:

xi = < all (u, v) chosen $ yi = all (u, v) not chosen >

I The matrix has full rank.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 20 / 35

NIDPDA to UIDPDA: 2Θ(n2)

Upper bound: known for NIDPDA → IDPDA.

Let Σ+1 = {<}, Σ0 = {0, 1,#, $}, Σ−1 = {>}, consider

< . . . uv . . . $. . . vu . . . >

(n different us and vs)

O(n)-state NIDPDA guesses u.

Every UIDPDA requires 2
n2

2 states.
I Arrange n2 pairs (u, v) into n2

2 pairs.

(u1, v1) ←→ (u′1, v
′
1)

...
(u n2

2

, v n2

2

) ←→ (u′
n2

2

, v ′
n2

2

)

I Choose one from each line:

xi = < all (u, v) chosen $ yi = all (u, v) not chosen >

I The matrix has full rank.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 20 / 35

Limited Nondeterminism
Finite path IDPDA

UIDPDAs: unique accepting computation, otherwise unlimited
nondeterminism.

Limit total amount of nondeterminism in NIDPDAs?
I Analogous measures earlier considered for NFAs

a k-path NIDPDA has at most k-branches in any computation tree

I an NIDPDA has finite path property if it is k-path for some k ≥ 1

multiple-entry IDPDA: a DIDPDA with k ≥ 1 initial states

I k-entry DIDPDA is a (very restricted) k-path NIDPDA

Formal definitions in the proceedings.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 21 / 35

Limited Nondeterminism
Finite path IDPDA

UIDPDAs: unique accepting computation, otherwise unlimited
nondeterminism.

Limit total amount of nondeterminism in NIDPDAs?
I Analogous measures earlier considered for NFAs

a k-path NIDPDA has at most k-branches in any computation tree

I an NIDPDA has finite path property if it is k-path for some k ≥ 1

multiple-entry IDPDA: a DIDPDA with k ≥ 1 initial states

I k-entry DIDPDA is a (very restricted) k-path NIDPDA

Formal definitions in the proceedings.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 21 / 35

Limited Nondeterminism
Finite path IDPDA

UIDPDAs: unique accepting computation, otherwise unlimited
nondeterminism.

Limit total amount of nondeterminism in NIDPDAs?
I Analogous measures earlier considered for NFAs

a k-path NIDPDA has at most k-branches in any computation tree

I an NIDPDA has finite path property if it is k-path for some k ≥ 1

multiple-entry IDPDA: a DIDPDA with k ≥ 1 initial states

I k-entry DIDPDA is a (very restricted) k-path NIDPDA

Formal definitions in the proceedings.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 21 / 35

Limited Nondeterminism
Finite path IDPDA

UIDPDAs: unique accepting computation, otherwise unlimited
nondeterminism.

Limit total amount of nondeterminism in NIDPDAs?
I Analogous measures earlier considered for NFAs

a k-path NIDPDA has at most k-branches in any computation tree
I an NIDPDA has finite path property if it is k-path for some k ≥ 1

multiple-entry IDPDA: a DIDPDA with k ≥ 1 initial states

I k-entry DIDPDA is a (very restricted) k-path NIDPDA

Formal definitions in the proceedings.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 21 / 35

Limited Nondeterminism
Finite path IDPDA

UIDPDAs: unique accepting computation, otherwise unlimited
nondeterminism.

Limit total amount of nondeterminism in NIDPDAs?
I Analogous measures earlier considered for NFAs

a k-path NIDPDA has at most k-branches in any computation tree
I an NIDPDA has finite path property if it is k-path for some k ≥ 1

multiple-entry IDPDA: a DIDPDA with k ≥ 1 initial states

I k-entry DIDPDA is a (very restricted) k-path NIDPDA

Formal definitions in the proceedings.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 21 / 35

Limited Nondeterminism
Finite path IDPDA

UIDPDAs: unique accepting computation, otherwise unlimited
nondeterminism.

Limit total amount of nondeterminism in NIDPDAs?
I Analogous measures earlier considered for NFAs

a k-path NIDPDA has at most k-branches in any computation tree
I an NIDPDA has finite path property if it is k-path for some k ≥ 1

multiple-entry IDPDA: a DIDPDA with k ≥ 1 initial states
I k-entry DIDPDA is a (very restricted) k-path NIDPDA

Formal definitions in the proceedings.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 21 / 35

Limited Nondeterminism
Finite path IDPDA

UIDPDAs: unique accepting computation, otherwise unlimited
nondeterminism.

Limit total amount of nondeterminism in NIDPDAs?
I Analogous measures earlier considered for NFAs

a k-path NIDPDA has at most k-branches in any computation tree
I an NIDPDA has finite path property if it is k-path for some k ≥ 1

multiple-entry IDPDA: a DIDPDA with k ≥ 1 initial states
I k-entry DIDPDA is a (very restricted) k-path NIDPDA

Formal definitions in the proceedings.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 21 / 35

Determinizing k-entry DIDPDAs

Lemma

A k-entry DIDPDA A with n states and m stack symbols simulated by a
DIDPDA B with (n + 1)k − 1 states and mk stack symbols.

B simulates k computations.

B uses k-tuples of states.

B pushes k-tuples
of stack symbols.

each state matched to a
corresponding stack symbol.

< >a

v

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 22 / 35

Determinizing k-entry DIDPDAs

Lemma

A k-entry DIDPDA A with n states and m stack symbols simulated by a
DIDPDA B with (n + 1)k − 1 states and mk stack symbols.

B simulates k computations.

B uses k-tuples of states.

B pushes k-tuples
of stack symbols.

each state matched to a
corresponding stack symbol.

< >a

v

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 22 / 35

Determinizing k-entry DIDPDAs

Lemma

A k-entry DIDPDA A with n states and m stack symbols simulated by a
DIDPDA B with (n + 1)k − 1 states and mk stack symbols.

B simulates k computations.

B uses k-tuples of states.

B pushes k-tuples
of stack symbols.

each state matched to a
corresponding stack symbol.

< >a

v

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 22 / 35

Determinizing k-entry DIDPDAs

Lemma

A k-entry DIDPDA A with n states and m stack symbols simulated by a
DIDPDA B with (n + 1)k − 1 states and mk stack symbols.

B simulates k computations.

B uses k-tuples of states.

B pushes k-tuples
of stack symbols.

each state matched to a
corresponding stack symbol.

< >a

v

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 22 / 35

Determinizing k-entry DIDPDAs

Lemma

A k-entry DIDPDA A with n states and m stack symbols simulated by a
DIDPDA B with (n + 1)k − 1 states and mk stack symbols.

B simulates k computations.

B uses k-tuples of states.

B pushes k-tuples
of stack symbols.

each state matched to a
corresponding stack symbol.

< >a

v

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 22 / 35

Determinizing k-entry DIDPDAs

Lemma

A k-entry DIDPDA A with n states and m stack symbols simulated by a
DIDPDA B with (n + 1)k − 1 states and mk stack symbols.

B simulates k computations.

B uses k-tuples of states.

B pushes k-tuples
of stack symbols.

each state matched to a
corresponding stack symbol.

< >a

v

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 22 / 35

Determinizing k-entry DIDPDAs

Lemma

A k-entry DIDPDA A with n states and m stack symbols simulated by a
DIDPDA B with (n + 1)k − 1 states and mk stack symbols.

B simulates k computations.

B uses k-tuples of states.

B pushes k-tuples
of stack symbols.

each state matched to a
corresponding stack symbol.

< >a

v

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 22 / 35

Determinizing k-path NIDPDAs

Lemma

A k-path NIDPDA A with n states and m stack symbols simulated by a
DIDPDA B with

∑k
i=1(n + 1)i · i i states and

∑k
i=1 m

i stack symbols.

Begins with k0 6 k computations.

New computations may emerge
at each step.

Pushes `-tuples.

May branch inside the brackets.

How to match `′ > ` states
to ` symbols?

< >a

v

X Mark each component with the number of parent component.

Use these data to match ` symbols to `′ states.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 23 / 35

Determinizing k-path NIDPDAs

Lemma

A k-path NIDPDA A with n states and m stack symbols simulated by a
DIDPDA B with

∑k
i=1(n + 1)i · i i states and

∑k
i=1 m

i stack symbols.

Begins with k0 6 k computations.

New computations may emerge
at each step.

Pushes `-tuples.

May branch inside the brackets.

How to match `′ > ` states
to ` symbols?

< >a

v

X Mark each component with the number of parent component.

Use these data to match ` symbols to `′ states.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 23 / 35

Determinizing k-path NIDPDAs

Lemma

A k-path NIDPDA A with n states and m stack symbols simulated by a
DIDPDA B with

∑k
i=1(n + 1)i · i i states and

∑k
i=1 m

i stack symbols.

Begins with k0 6 k computations.

New computations may emerge
at each step.

Pushes `-tuples.

May branch inside the brackets.

How to match `′ > ` states
to ` symbols?

< >a

v

X Mark each component with the number of parent component.

Use these data to match ` symbols to `′ states.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 23 / 35

Determinizing k-path NIDPDAs

Lemma

A k-path NIDPDA A with n states and m stack symbols simulated by a
DIDPDA B with

∑k
i=1(n + 1)i · i i states and

∑k
i=1 m

i stack symbols.

Begins with k0 6 k computations.

New computations may emerge
at each step.

Pushes `-tuples.

May branch inside the brackets.

How to match `′ > ` states
to ` symbols?

< >a

v

X Mark each component with the number of parent component.

Use these data to match ` symbols to `′ states.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 23 / 35

Determinizing k-path NIDPDAs

Lemma

A k-path NIDPDA A with n states and m stack symbols simulated by a
DIDPDA B with

∑k
i=1(n + 1)i · i i states and

∑k
i=1 m

i stack symbols.

Begins with k0 6 k computations.

New computations may emerge
at each step.

Pushes `-tuples.

May branch inside the brackets.

How to match `′ > ` states
to ` symbols?

< >a

v

X Mark each component with the number of parent component.

Use these data to match ` symbols to `′ states.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 23 / 35

Determinizing k-path NIDPDAs

Lemma

A k-path NIDPDA A with n states and m stack symbols simulated by a
DIDPDA B with

∑k
i=1(n + 1)i · i i states and

∑k
i=1 m

i stack symbols.

Begins with k0 6 k computations.

New computations may emerge
at each step.

Pushes `-tuples.

May branch inside the brackets.

How to match `′ > ` states
to ` symbols?

< >a

v

X Mark each component with the number of parent component.

Use these data to match ` symbols to `′ states.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 23 / 35

Determinizing k-path NIDPDAs

Lemma

A k-path NIDPDA A with n states and m stack symbols simulated by a
DIDPDA B with

∑k
i=1(n + 1)i · i i states and

∑k
i=1 m

i stack symbols.

Begins with k0 6 k computations.

New computations may emerge
at each step.

Pushes `-tuples.

May branch inside the brackets.

How to match `′ > ` states
to ` symbols?

< >a

v
1
2

X Mark each component with the number of parent component.

Use these data to match ` symbols to `′ states.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 23 / 35

Determinizing k-path NIDPDAs

Lemma

A k-path NIDPDA A with n states and m stack symbols simulated by a
DIDPDA B with

∑k
i=1(n + 1)i · i i states and

∑k
i=1 m

i stack symbols.

Begins with k0 6 k computations.

New computations may emerge
at each step.

Pushes `-tuples.

May branch inside the brackets.

How to match `′ > ` states
to ` symbols?

< >a

v
1
2

1
2
1 1

2
1

X Mark each component with the number of parent component.

Use these data to match ` symbols to `′ states.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 23 / 35

Determinizing k-path NIDPDAs

Lemma

A k-path NIDPDA A with n states and m stack symbols simulated by a
DIDPDA B with

∑k
i=1(n + 1)i · i i states and

∑k
i=1 m

i stack symbols.

Begins with k0 6 k computations.

New computations may emerge
at each step.

Pushes `-tuples.

May branch inside the brackets.

How to match `′ > ` states
to ` symbols?

< >a

v
1
2

1
2
1 1

2
1

1
2
1
2

1
2
1
2

X Mark each component with the number of parent component.

Use these data to match ` symbols to `′ states.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 23 / 35

Determinizing k-path NIDPDAs

Lemma

A k-path NIDPDA A with n states and m stack symbols simulated by a
DIDPDA B with

∑k
i=1(n + 1)i · i i states and

∑k
i=1 m

i stack symbols.

Begins with k0 6 k computations.

New computations may emerge
at each step.

Pushes `-tuples.

May branch inside the brackets.

How to match `′ > ` states
to ` symbols?

< >a

v
1
2

1
2
1 1

2
1

1
2
1
2

1
2
1
2

X Mark each component with the number of parent component.

Use these data to match ` symbols to `′ states.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 23 / 35

Lower bound on size blow-up of determinization

For k-entry DIDPDAs, tight lower bound.

The alphabet depends on n and k .

Lemma

For every k > 1 and n > k, there exists an alphabet Σk,n and a language
Lk,n over Σk,n recognized by a k-entry DIDPDA with n states and k stack
symbols, such that any DIDPDA for Lk,n needs (n + 1)k − 1 states.

the alphabet has one left bracket <, one right bracket >, and a large

number of neutral symbols Σk,n
0 = Xfunc ∪ Yfunc, where

I Xfunc = { af | f : {1, . . . , k} → {1, . . . , n, undefined} }
I Yfunc = { bg | g : {1, . . . , n} → {1, . . . , k, undefined} }

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 24 / 35

Lower bound on size blow-up of determinization

For k-entry DIDPDAs, tight lower bound.

The alphabet depends on n and k .

Lemma

For every k > 1 and n > k, there exists an alphabet Σk,n and a language
Lk,n over Σk,n recognized by a k-entry DIDPDA with n states and k stack
symbols, such that any DIDPDA for Lk,n needs (n + 1)k − 1 states.

the alphabet has one left bracket <, one right bracket >, and a large

number of neutral symbols Σk,n
0 = Xfunc ∪ Yfunc, where

I Xfunc = { af | f : {1, . . . , k} → {1, . . . , n, undefined} }
I Yfunc = { bg | g : {1, . . . , n} → {1, . . . , k , undefined} }

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 24 / 35

Lower bound language
(proof continued)

L̂k,n = {<af bg> | af , bg ∈ Σk,n
0 , ∃s ∈ {1, . . . , k} : g(f (s)) = s}.

strings of L̂k,n consist of two symbols indexed by functions whose
composition has a fixed point

a string of the form <af bg> (f ∈ Xfunc, g ∈ Yfunc) is said to be
well-formed

a k-entry DIDPDA A with n states and k stack symbols that accepts

well-formed strings from L̂k,n (as well as some ill-formed strings)

I a k-entry DIDPDA for L̂k,n would need more states

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 25 / 35

Lower bound language
(proof continued)

L̂k,n = {<af bg> | af , bg ∈ Σk,n
0 , ∃s ∈ {1, . . . , k} : g(f (s)) = s}.

strings of L̂k,n consist of two symbols indexed by functions whose
composition has a fixed point

a string of the form <af bg> (f ∈ Xfunc, g ∈ Yfunc) is said to be
well-formed

a k-entry DIDPDA A with n states and k stack symbols that accepts

well-formed strings from L̂k,n (as well as some ill-formed strings)

I a k-entry DIDPDA for L̂k,n would need more states

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 25 / 35

Lower bound language
(proof continued)

L̂k,n = {<af bg> | af , bg ∈ Σk,n
0 , ∃s ∈ {1, . . . , k} : g(f (s)) = s}.

strings of L̂k,n consist of two symbols indexed by functions whose
composition has a fixed point

a string of the form <af bg> (f ∈ Xfunc, g ∈ Yfunc) is said to be
well-formed

a k-entry DIDPDA A with n states and k stack symbols that accepts

well-formed strings from L̂k,n (as well as some ill-formed strings)

I a k-entry DIDPDA for L̂k,n would need more states

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 25 / 35

Lower bound language
(proof continued)

L̂k,n = {<af bg> | af , bg ∈ Σk,n
0 , ∃s ∈ {1, . . . , k} : g(f (s)) = s}.

strings of L̂k,n consist of two symbols indexed by functions whose
composition has a fixed point

a string of the form <af bg> (f ∈ Xfunc, g ∈ Yfunc) is said to be
well-formed

a k-entry DIDPDA A with n states and k stack symbols that accepts

well-formed strings from L̂k,n (as well as some ill-formed strings)

I a k-entry DIDPDA for L̂k,n would need more states

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 25 / 35

Sepator sets
(somewhat simplified definition)

A set S = { <x1, . . . <xm }, x1, . . . , xm ∈ Σ∗0, is a 1-separator set for
language L if

each <xi is a prefix of some string in L,

for all i 6= j . there exists wi ,j ∈ Σ∗ such that exactly one of xiwi ,j and
xjwi ,j is in L.

Separator sets are analogous to the notion of fooling sets used to
prove lower bounds for NFAs.

The definition used here is more specialized.

Lemma

If L has a separator set of cardinality m, then any DIDPDA of L must have
at least m states.

Proof is straightforward.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 26 / 35

Sepator sets
(somewhat simplified definition)

A set S = { <x1, . . . <xm }, x1, . . . , xm ∈ Σ∗0, is a 1-separator set for
language L if

each <xi is a prefix of some string in L,

for all i 6= j . there exists wi ,j ∈ Σ∗ such that exactly one of xiwi ,j and
xjwi ,j is in L.

Separator sets are analogous to the notion of fooling sets used to
prove lower bounds for NFAs.

The definition used here is more specialized.

Lemma

If L has a separator set of cardinality m, then any DIDPDA of L must have
at least m states.

Proof is straightforward.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 26 / 35

Sepator sets
(somewhat simplified definition)

A set S = { <x1, . . . <xm }, x1, . . . , xm ∈ Σ∗0, is a 1-separator set for
language L if

each <xi is a prefix of some string in L,

for all i 6= j . there exists wi ,j ∈ Σ∗ such that exactly one of xiwi ,j and
xjwi ,j is in L.

Separator sets are analogous to the notion of fooling sets used to
prove lower bounds for NFAs.

The definition used here is more specialized.

Lemma

If L has a separator set of cardinality m, then any DIDPDA of L must have
at least m states.

Proof is straightforward.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 26 / 35

Sepator sets
(somewhat simplified definition)

A set S = { <x1, . . . <xm }, x1, . . . , xm ∈ Σ∗0, is a 1-separator set for
language L if

each <xi is a prefix of some string in L,

for all i 6= j . there exists wi ,j ∈ Σ∗ such that exactly one of xiwi ,j and
xjwi ,j is in L.

Separator sets are analogous to the notion of fooling sets used to
prove lower bounds for NFAs.

The definition used here is more specialized.

Lemma

If L has a separator set of cardinality m, then any DIDPDA of L must have
at least m states.

Proof is straightforward.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 26 / 35

Sepator sets
(somewhat simplified definition)

A set S = { <x1, . . . <xm }, x1, . . . , xm ∈ Σ∗0, is a 1-separator set for
language L if

each <xi is a prefix of some string in L,

for all i 6= j . there exists wi ,j ∈ Σ∗ such that exactly one of xiwi ,j and
xjwi ,j is in L.

Separator sets are analogous to the notion of fooling sets used to
prove lower bounds for NFAs.

The definition used here is more specialized.

Lemma

If L has a separator set of cardinality m, then any DIDPDA of L must have
at least m states.

Proof is straightforward.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 26 / 35

Separator set for L̂k ,n
(lower bound proof continued)

L̂k,n = {<af bg> | af , bg ∈ Σk,n
0 , ∃s ∈ {1, . . . , k} : g(f (s)) = s}.

Separator set:

S = {<af | af ∈ Xfunc, ∃i ∈ {1, . . . , k} : f (i) is defined}

consider two distinct strings <af1 , <af2 ∈ S , with f1 6= f2

there exists i for which f1(i) is defined and f2(i) 6= f1(i) (or vice versa)

define

g(j) =

{
i , if j = f1(i),
undefined, otherwise.

<af1bg> ∈ L̂k,n and <af2bg> 6∈ L̂k,n

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 27 / 35

Separator set for L̂k ,n
(lower bound proof continued)

L̂k,n = {<af bg> | af , bg ∈ Σk,n
0 , ∃s ∈ {1, . . . , k} : g(f (s)) = s}.

Separator set:

S = {<af | af ∈ Xfunc, ∃i ∈ {1, . . . , k} : f (i) is defined}

consider two distinct strings <af1 , <af2 ∈ S , with f1 6= f2

there exists i for which f1(i) is defined and f2(i) 6= f1(i) (or vice versa)

define

g(j) =

{
i , if j = f1(i),
undefined, otherwise.

<af1bg> ∈ L̂k,n and <af2bg> 6∈ L̂k,n

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 27 / 35

Separator set for L̂k ,n
(lower bound proof continued)

L̂k,n = {<af bg> | af , bg ∈ Σk,n
0 , ∃s ∈ {1, . . . , k} : g(f (s)) = s}.

Separator set:

S = {<af | af ∈ Xfunc, ∃i ∈ {1, . . . , k} : f (i) is defined}

consider two distinct strings <af1 , <af2 ∈ S , with f1 6= f2

there exists i for which f1(i) is defined and f2(i) 6= f1(i) (or vice versa)

define

g(j) =

{
i , if j = f1(i),
undefined, otherwise.

<af1bg> ∈ L̂k,n and <af2bg> 6∈ L̂k,n

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 27 / 35

Separator set for L̂k ,n
(lower bound proof continued)

L̂k,n = {<af bg> | af , bg ∈ Σk,n
0 , ∃s ∈ {1, . . . , k} : g(f (s)) = s}.

Separator set:

S = {<af | af ∈ Xfunc, ∃i ∈ {1, . . . , k} : f (i) is defined}

consider two distinct strings <af1 , <af2 ∈ S , with f1 6= f2

there exists i for which f1(i) is defined and f2(i) 6= f1(i) (or vice versa)

define

g(j) =

{
i , if j = f1(i),
undefined, otherwise.

<af1bg> ∈ L̂k,n and <af2bg> 6∈ L̂k,n

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 27 / 35

Separator set for L̂k ,n
(lower bound proof continued)

L̂k,n = {<af bg> | af , bg ∈ Σk,n
0 , ∃s ∈ {1, . . . , k} : g(f (s)) = s}.

Separator set:

S = {<af | af ∈ Xfunc, ∃i ∈ {1, . . . , k} : f (i) is defined}

consider two distinct strings <af1 , <af2 ∈ S , with f1 6= f2

there exists i for which f1(i) is defined and f2(i) 6= f1(i) (or vice versa)

define

g(j) =

{
i , if j = f1(i),
undefined, otherwise.

<af1bg> ∈ L̂k,n and <af2bg> 6∈ L̂k,n

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 27 / 35

k-entry DIDPDA to DIDPDA

For k-entry DIDPDAs the bound is tight

Theorem

A k-entry DIDPDA with n states and m stack symbols can be
simulated by a DIDPDA with (n + 1)k − 1 states and mk stack
symbols.

For every n > k, there exists a k-entry DIDPDA with n states and k
stack symbols, defined over an alphabet depending on n and k, such
that any equivalent DIDPDA needs at least (n + 1)k − 1 states.

Above lower bound uses a growing alphabet.

For 6-symbol alphabet: lower bound (n4)k on the size of a DIDPDA
simulating a k-entry automaton with n states and k stack symbols.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 28 / 35

k-entry DIDPDA to DIDPDA

For k-entry DIDPDAs the bound is tight

Theorem

A k-entry DIDPDA with n states and m stack symbols can be
simulated by a DIDPDA with (n + 1)k − 1 states and mk stack
symbols.

For every n > k, there exists a k-entry DIDPDA with n states and k
stack symbols, defined over an alphabet depending on n and k, such
that any equivalent DIDPDA needs at least (n + 1)k − 1 states.

Above lower bound uses a growing alphabet.

For 6-symbol alphabet: lower bound (n4)k on the size of a DIDPDA
simulating a k-entry automaton with n states and k stack symbols.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 28 / 35

k-entry DIDPDA to DIDPDA

For k-entry DIDPDAs the bound is tight

Theorem

A k-entry DIDPDA with n states and m stack symbols can be
simulated by a DIDPDA with (n + 1)k − 1 states and mk stack
symbols.

For every n > k, there exists a k-entry DIDPDA with n states and k
stack symbols, defined over an alphabet depending on n and k, such
that any equivalent DIDPDA needs at least (n + 1)k − 1 states.

Above lower bound uses a growing alphabet.

For 6-symbol alphabet: lower bound (n4)k on the size of a DIDPDA
simulating a k-entry automaton with n states and k stack symbols.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 28 / 35

k-entry DIDPDA to DIDPDA

For k-entry DIDPDAs the bound is tight

Theorem

A k-entry DIDPDA with n states and m stack symbols can be
simulated by a DIDPDA with (n + 1)k − 1 states and mk stack
symbols.

For every n > k, there exists a k-entry DIDPDA with n states and k
stack symbols, defined over an alphabet depending on n and k, such
that any equivalent DIDPDA needs at least (n + 1)k − 1 states.

Above lower bound uses a growing alphabet.

For 6-symbol alphabet: lower bound (n4)k on the size of a DIDPDA
simulating a k-entry automaton with n states and k stack symbols.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 28 / 35

k-path NIDPDA to DIDPDA

For a k-path NIDPDA with n states and m stack symbols:

upper bound:

k∑
i=1

(n + 1)i · i i states and
k∑

i=1

mi stack symbols.

lower bound: (n + 1)k − 1 states

The lower bound uses a k-entry DIDPDA (discussed above).

Open questions:
I Can the lower bound be improved for general k-entry DIDPDA?
I Can the upper bound construction be improved?

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 29 / 35

k-path NIDPDA to DIDPDA

For a k-path NIDPDA with n states and m stack symbols:

upper bound:

k∑
i=1

(n + 1)i · i i states and
k∑

i=1

mi stack symbols.

lower bound: (n + 1)k − 1 states

The lower bound uses a k-entry DIDPDA (discussed above).

Open questions:
I Can the lower bound be improved for general k-entry DIDPDA?
I Can the upper bound construction be improved?

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 29 / 35

k-path NIDPDA to DIDPDA

For a k-path NIDPDA with n states and m stack symbols:

upper bound:

k∑
i=1

(n + 1)i · i i states and
k∑

i=1

mi stack symbols.

lower bound: (n + 1)k − 1 states

The lower bound uses a k-entry DIDPDA (discussed above).

Open questions:
I Can the lower bound be improved for general k-entry DIDPDA?
I Can the upper bound construction be improved?

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 29 / 35

k-path NIDPDA to DIDPDA

For a k-path NIDPDA with n states and m stack symbols:

upper bound:

k∑
i=1

(n + 1)i · i i states and
k∑

i=1

mi stack symbols.

lower bound: (n + 1)k − 1 states

The lower bound uses a k-entry DIDPDA (discussed above).

Open questions:
I Can the lower bound be improved for general k-entry DIDPDA?
I Can the upper bound construction be improved?

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 29 / 35

NIDPDA to a k-path NIDPDA

Theorem

For any k ≥ 1, the worst-case number of states in a k-path NIDPDA
equivalent to an NIDPDA with n states is 2Θ(n2).

Proof inspired by an argument by Goldstine, Kintala and Wotschke (1990)
for NFAs with finite branching:

Let A be an NIDPDA with “maximal” size blow-up for
determinization.

Consider the language ($L(A)$)∗

k-path NIDPDA for ($L(A)$)∗ cannot be smaller than a minimal
DIDPDA.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 30 / 35

NIDPDA to a k-path NIDPDA

Theorem

For any k ≥ 1, the worst-case number of states in a k-path NIDPDA
equivalent to an NIDPDA with n states is 2Θ(n2).

Proof inspired by an argument by Goldstine, Kintala and Wotschke (1990)
for NFAs with finite branching:

Let A be an NIDPDA with “maximal” size blow-up for
determinization.

Consider the language ($L(A)$)∗

k-path NIDPDA for ($L(A)$)∗ cannot be smaller than a minimal
DIDPDA.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 30 / 35

NIDPDA to a k-path NIDPDA

Theorem

For any k ≥ 1, the worst-case number of states in a k-path NIDPDA
equivalent to an NIDPDA with n states is 2Θ(n2).

Proof inspired by an argument by Goldstine, Kintala and Wotschke (1990)
for NFAs with finite branching:

Let A be an NIDPDA with “maximal” size blow-up for
determinization.

Consider the language ($L(A)$)∗

k-path NIDPDA for ($L(A)$)∗ cannot be smaller than a minimal
DIDPDA.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 30 / 35

NIDPDA to a k-path NIDPDA

Theorem

For any k ≥ 1, the worst-case number of states in a k-path NIDPDA
equivalent to an NIDPDA with n states is 2Θ(n2).

Proof inspired by an argument by Goldstine, Kintala and Wotschke (1990)
for NFAs with finite branching:

Let A be an NIDPDA with “maximal” size blow-up for
determinization.

Consider the language ($L(A)$)∗

k-path NIDPDA for ($L(A)$)∗ cannot be smaller than a minimal
DIDPDA.

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 30 / 35

Deciding the k-path property
The k-path property of an NIDPDA refers to its computations on all
possible inputs

I given the syntactic specification of an NIDPDA A, it is not at all clear
whether or not A has this property

Lemma

Given an NIDPDA A with n states and a number k > 1, one can decide in
time poly(kk · nk) whether or not A has the k-path property.

Algorithm constructs a DIDPDA B which accepts input w if A has
more than k computations on w

I decide emptiness for B (in polynomial time)

Theorem

For a fixed k > 1, checking whether or not a given NIDPDA has the
k-path property is P-complete.

Proof uses reduction from DIDPDA emptiness problem (in logspace)

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 31 / 35

Deciding the k-path property
The k-path property of an NIDPDA refers to its computations on all
possible inputs

I given the syntactic specification of an NIDPDA A, it is not at all clear
whether or not A has this property

Lemma

Given an NIDPDA A with n states and a number k > 1, one can decide in
time poly(kk · nk) whether or not A has the k-path property.

Algorithm constructs a DIDPDA B which accepts input w if A has
more than k computations on w

I decide emptiness for B (in polynomial time)

Theorem

For a fixed k > 1, checking whether or not a given NIDPDA has the
k-path property is P-complete.

Proof uses reduction from DIDPDA emptiness problem (in logspace)

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 31 / 35

Deciding the k-path property
The k-path property of an NIDPDA refers to its computations on all
possible inputs

I given the syntactic specification of an NIDPDA A, it is not at all clear
whether or not A has this property

Lemma

Given an NIDPDA A with n states and a number k > 1, one can decide in
time poly(kk · nk) whether or not A has the k-path property.

Algorithm constructs a DIDPDA B which accepts input w if A has
more than k computations on w

I decide emptiness for B (in polynomial time)

Theorem

For a fixed k > 1, checking whether or not a given NIDPDA has the
k-path property is P-complete.

Proof uses reduction from DIDPDA emptiness problem (in logspace)

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 31 / 35

Deciding the k-path property
The k-path property of an NIDPDA refers to its computations on all
possible inputs

I given the syntactic specification of an NIDPDA A, it is not at all clear
whether or not A has this property

Lemma

Given an NIDPDA A with n states and a number k > 1, one can decide in
time poly(kk · nk) whether or not A has the k-path property.

Algorithm constructs a DIDPDA B which accepts input w if A has
more than k computations on w

I decide emptiness for B (in polynomial time)

Theorem

For a fixed k > 1, checking whether or not a given NIDPDA has the
k-path property is P-complete.

Proof uses reduction from DIDPDA emptiness problem (in logspace)

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 31 / 35

Deciding the k-path property
The k-path property of an NIDPDA refers to its computations on all
possible inputs

I given the syntactic specification of an NIDPDA A, it is not at all clear
whether or not A has this property

Lemma

Given an NIDPDA A with n states and a number k > 1, one can decide in
time poly(kk · nk) whether or not A has the k-path property.

Algorithm constructs a DIDPDA B which accepts input w if A has
more than k computations on w

I decide emptiness for B (in polynomial time)

Theorem

For a fixed k > 1, checking whether or not a given NIDPDA has the
k-path property is P-complete.

Proof uses reduction from DIDPDA emptiness problem (in logspace)

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 31 / 35

Deciding the k-path property
The k-path property of an NIDPDA refers to its computations on all
possible inputs

I given the syntactic specification of an NIDPDA A, it is not at all clear
whether or not A has this property

Lemma

Given an NIDPDA A with n states and a number k > 1, one can decide in
time poly(kk · nk) whether or not A has the k-path property.

Algorithm constructs a DIDPDA B which accepts input w if A has
more than k computations on w

I decide emptiness for B (in polynomial time)

Theorem

For a fixed k > 1, checking whether or not a given NIDPDA has the
k-path property is P-complete.

Proof uses reduction from DIDPDA emptiness problem (in logspace)

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 31 / 35

Deciding the finite path property
(with the value of k arbitrary)

Finite path property for NFAs can be determined by analyzing the
transition graph

The method does not work in the precense of stack operations

I It is undecidable whether a (general) nondeterministic PDA is 3-path

Open problem

Is it decidable whether or not a given NIDPDA has the finite path
property?

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 32 / 35

Deciding the finite path property
(with the value of k arbitrary)

Finite path property for NFAs can be determined by analyzing the
transition graph

The method does not work in the precense of stack operations

I It is undecidable whether a (general) nondeterministic PDA is 3-path

Open problem

Is it decidable whether or not a given NIDPDA has the finite path
property?

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 32 / 35

Deciding the finite path property
(with the value of k arbitrary)

Finite path property for NFAs can be determined by analyzing the
transition graph

The method does not work in the precense of stack operations
I It is undecidable whether a (general) nondeterministic PDA is 3-path

Open problem

Is it decidable whether or not a given NIDPDA has the finite path
property?

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 32 / 35

Deciding the finite path property
(with the value of k arbitrary)

Finite path property for NFAs can be determined by analyzing the
transition graph

The method does not work in the precense of stack operations
I It is undecidable whether a (general) nondeterministic PDA is 3-path

Open problem

Is it decidable whether or not a given NIDPDA has the finite path
property?

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 32 / 35

Conclusion

Main open problems:

What is the precise size blow-up of determinizing k-path NIDPDAs ?

Can the finite path property be decided effectively ?
I Not just a question of complexity – even the decidability status of the

question is open

The amount of nondeterminism can be limited by a function on input
length (analogously as has been done with NFAs).
Questions:

I Descriptional complexity of determinization
I Characterization of possible nondeterminism growth rates for an

NIDPDA

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 33 / 35

Conclusion

Main open problems:

What is the precise size blow-up of determinizing k-path NIDPDAs ?

Can the finite path property be decided effectively ?
I Not just a question of complexity – even the decidability status of the

question is open

The amount of nondeterminism can be limited by a function on input
length (analogously as has been done with NFAs).
Questions:

I Descriptional complexity of determinization
I Characterization of possible nondeterminism growth rates for an

NIDPDA

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 33 / 35

Conclusion

Main open problems:

What is the precise size blow-up of determinizing k-path NIDPDAs ?

Can the finite path property be decided effectively ?
I Not just a question of complexity – even the decidability status of the

question is open

The amount of nondeterminism can be limited by a function on input
length (analogously as has been done with NFAs).
Questions:

I Descriptional complexity of determinization
I Characterization of possible nondeterminism growth rates for an

NIDPDA

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 33 / 35

Conclusion

Main open problems:

What is the precise size blow-up of determinizing k-path NIDPDAs ?

Can the finite path property be decided effectively ?
I Not just a question of complexity – even the decidability status of the

question is open

The amount of nondeterminism can be limited by a function on input
length (analogously as has been done with NFAs).
Questions:

I Descriptional complexity of determinization

I Characterization of possible nondeterminism growth rates for an
NIDPDA

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 33 / 35

Conclusion

Main open problems:

What is the precise size blow-up of determinizing k-path NIDPDAs ?

Can the finite path property be decided effectively ?
I Not just a question of complexity – even the decidability status of the

question is open

The amount of nondeterminism can be limited by a function on input
length (analogously as has been done with NFAs).
Questions:

I Descriptional complexity of determinization
I Characterization of possible nondeterminism growth rates for an

NIDPDA

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 33 / 35

Conclusion
Extended models

Alternating input-driven pushdown automata L. Bozzelli (2007),
C. Dax, F. Klaedtke (2011), M. Schuster, T. Schwentick (2014)

I Non-emptiness for alternating IDPDA is complete for doubly
exponential time (Bozzelli 2007)

I Uniform membership for alternating IDPDA is PSPACE-complete
(Schuster & Schwentick 2014)

I Open: What is the descriptional complexity trade-off between
alternating IDPDAs and nondeterministic (resp. deterministic) IDPDAs

Two-way input-driven pushdown automata

I Natural definition of 2-way IDPDA: when moving right-to-left, the
automaton pushes at symbols of Σ−1 and pops at symbols of Σ+1

I The class of recognized languages remains the same
I Descriptional complexity of 2-way IDPDA to 1-way IDPDA conversion
I Complexity of decision problems

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 34 / 35

Conclusion
Extended models

Alternating input-driven pushdown automata L. Bozzelli (2007),
C. Dax, F. Klaedtke (2011), M. Schuster, T. Schwentick (2014)

I Non-emptiness for alternating IDPDA is complete for doubly
exponential time (Bozzelli 2007)

I Uniform membership for alternating IDPDA is PSPACE-complete
(Schuster & Schwentick 2014)

I Open: What is the descriptional complexity trade-off between
alternating IDPDAs and nondeterministic (resp. deterministic) IDPDAs

Two-way input-driven pushdown automata

I Natural definition of 2-way IDPDA: when moving right-to-left, the
automaton pushes at symbols of Σ−1 and pops at symbols of Σ+1

I The class of recognized languages remains the same
I Descriptional complexity of 2-way IDPDA to 1-way IDPDA conversion
I Complexity of decision problems

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 34 / 35

Conclusion
Extended models

Alternating input-driven pushdown automata L. Bozzelli (2007),
C. Dax, F. Klaedtke (2011), M. Schuster, T. Schwentick (2014)

I Non-emptiness for alternating IDPDA is complete for doubly
exponential time (Bozzelli 2007)

I Uniform membership for alternating IDPDA is PSPACE-complete
(Schuster & Schwentick 2014)

I Open: What is the descriptional complexity trade-off between
alternating IDPDAs and nondeterministic (resp. deterministic) IDPDAs

Two-way input-driven pushdown automata

I Natural definition of 2-way IDPDA: when moving right-to-left, the
automaton pushes at symbols of Σ−1 and pops at symbols of Σ+1

I The class of recognized languages remains the same
I Descriptional complexity of 2-way IDPDA to 1-way IDPDA conversion
I Complexity of decision problems

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 34 / 35

Conclusion
Extended models

Alternating input-driven pushdown automata L. Bozzelli (2007),
C. Dax, F. Klaedtke (2011), M. Schuster, T. Schwentick (2014)

I Non-emptiness for alternating IDPDA is complete for doubly
exponential time (Bozzelli 2007)

I Uniform membership for alternating IDPDA is PSPACE-complete
(Schuster & Schwentick 2014)

I Open: What is the descriptional complexity trade-off between
alternating IDPDAs and nondeterministic (resp. deterministic) IDPDAs

Two-way input-driven pushdown automata

I Natural definition of 2-way IDPDA: when moving right-to-left, the
automaton pushes at symbols of Σ−1 and pops at symbols of Σ+1

I The class of recognized languages remains the same
I Descriptional complexity of 2-way IDPDA to 1-way IDPDA conversion
I Complexity of decision problems

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 34 / 35

Conclusion
Extended models

Alternating input-driven pushdown automata L. Bozzelli (2007),
C. Dax, F. Klaedtke (2011), M. Schuster, T. Schwentick (2014)

I Non-emptiness for alternating IDPDA is complete for doubly
exponential time (Bozzelli 2007)

I Uniform membership for alternating IDPDA is PSPACE-complete
(Schuster & Schwentick 2014)

I Open: What is the descriptional complexity trade-off between
alternating IDPDAs and nondeterministic (resp. deterministic) IDPDAs

Two-way input-driven pushdown automata

I Natural definition of 2-way IDPDA: when moving right-to-left, the
automaton pushes at symbols of Σ−1 and pops at symbols of Σ+1

I The class of recognized languages remains the same
I Descriptional complexity of 2-way IDPDA to 1-way IDPDA conversion
I Complexity of decision problems

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 34 / 35

Conclusion
Extended models

Alternating input-driven pushdown automata L. Bozzelli (2007),
C. Dax, F. Klaedtke (2011), M. Schuster, T. Schwentick (2014)

I Non-emptiness for alternating IDPDA is complete for doubly
exponential time (Bozzelli 2007)

I Uniform membership for alternating IDPDA is PSPACE-complete
(Schuster & Schwentick 2014)

I Open: What is the descriptional complexity trade-off between
alternating IDPDAs and nondeterministic (resp. deterministic) IDPDAs

Two-way input-driven pushdown automata
I Natural definition of 2-way IDPDA: when moving right-to-left, the

automaton pushes at symbols of Σ−1 and pops at symbols of Σ+1

I The class of recognized languages remains the same
I Descriptional complexity of 2-way IDPDA to 1-way IDPDA conversion
I Complexity of decision problems

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 34 / 35

Conclusion
Extended models

Alternating input-driven pushdown automata L. Bozzelli (2007),
C. Dax, F. Klaedtke (2011), M. Schuster, T. Schwentick (2014)

I Non-emptiness for alternating IDPDA is complete for doubly
exponential time (Bozzelli 2007)

I Uniform membership for alternating IDPDA is PSPACE-complete
(Schuster & Schwentick 2014)

I Open: What is the descriptional complexity trade-off between
alternating IDPDAs and nondeterministic (resp. deterministic) IDPDAs

Two-way input-driven pushdown automata
I Natural definition of 2-way IDPDA: when moving right-to-left, the

automaton pushes at symbols of Σ−1 and pops at symbols of Σ+1

I The class of recognized languages remains the same

I Descriptional complexity of 2-way IDPDA to 1-way IDPDA conversion
I Complexity of decision problems

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 34 / 35

Conclusion
Extended models

Alternating input-driven pushdown automata L. Bozzelli (2007),
C. Dax, F. Klaedtke (2011), M. Schuster, T. Schwentick (2014)

I Non-emptiness for alternating IDPDA is complete for doubly
exponential time (Bozzelli 2007)

I Uniform membership for alternating IDPDA is PSPACE-complete
(Schuster & Schwentick 2014)

I Open: What is the descriptional complexity trade-off between
alternating IDPDAs and nondeterministic (resp. deterministic) IDPDAs

Two-way input-driven pushdown automata
I Natural definition of 2-way IDPDA: when moving right-to-left, the

automaton pushes at symbols of Σ−1 and pops at symbols of Σ+1

I The class of recognized languages remains the same
I Descriptional complexity of 2-way IDPDA to 1-way IDPDA conversion

I Complexity of decision problems

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 34 / 35

Conclusion
Extended models

Alternating input-driven pushdown automata L. Bozzelli (2007),
C. Dax, F. Klaedtke (2011), M. Schuster, T. Schwentick (2014)

I Non-emptiness for alternating IDPDA is complete for doubly
exponential time (Bozzelli 2007)

I Uniform membership for alternating IDPDA is PSPACE-complete
(Schuster & Schwentick 2014)

I Open: What is the descriptional complexity trade-off between
alternating IDPDAs and nondeterministic (resp. deterministic) IDPDAs

Two-way input-driven pushdown automata
I Natural definition of 2-way IDPDA: when moving right-to-left, the

automaton pushes at symbols of Σ−1 and pops at symbols of Σ+1

I The class of recognized languages remains the same
I Descriptional complexity of 2-way IDPDA to 1-way IDPDA conversion
I Complexity of decision problems

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 34 / 35

Questions?

A. Okhotin, K. Salomaa IDPDA and Limited Nondeterminism DLT 2014, Ekaterinburg 35 / 35

