Input-Driven Pushdown Automata with Limited Nondeterminism

ALEXANDER OKHOTIN KAI SALOMAA

Turku, Finland

Kingston, Canada

August 27, 2014

A. Okhotin, K. Salomaa

IDPDA and Limited Nondeterminism

DLT 2014, Ekaterinburg 1 / 35

• Input-driven PDAs: historical background and definitions

3

- Input-driven PDAs: historical background and definitions
 - Other equivalent models

3

- Input-driven PDAs: historical background and definitions
 - Other equivalent models
- Nondeterministic IDPDA: Size blow-up of determinization

- Input-driven PDAs: historical background and definitions
 - Other equivalent models
- Nondeterministic IDPDA: Size blow-up of determinization
- Unambiguous nondeterminism
 - $\blacktriangleright \ \text{nondeterministic} \longrightarrow \text{unambiguous} \longrightarrow \text{deterministic}$

- Input-driven PDAs: historical background and definitions
 - Other equivalent models
- Nondeterministic IDPDA: Size blow-up of determinization
- Unambiguous nondeterminism
 - $\blacktriangleright \ {\sf nondeterministic} \longrightarrow {\sf unambiguous} \longrightarrow {\sf deterministic}$
- Limited nondeterminism

- Input-driven PDAs: historical background and definitions
 - Other equivalent models
- Nondeterministic IDPDA: Size blow-up of determinization
- Unambiguous nondeterminism
 - $\blacktriangleright \ \text{nondeterministic} \longrightarrow \text{unambiguous} \longrightarrow \text{deterministic}$
- Limited nondeterminism
 - k-path NIDPDA and multiple entry DIDPDA

- Input-driven PDAs: historical background and definitions
 - Other equivalent models
- Nondeterministic IDPDA: Size blow-up of determinization
- Unambiguous nondeterminism
 - $\blacktriangleright \ \text{nondeterministic} \longrightarrow \text{unambiguous} \longrightarrow \text{deterministic}$
- Limited nondeterminism
 - k-path NIDPDA and multiple entry DIDPDA
 - Determinizing k-path NIDPDAs
 - ★ lower bounds for size blow-up
 - ★ nondeterministic \longrightarrow k-path \longrightarrow deterministic

- Input-driven PDAs: historical background and definitions
 - Other equivalent models
- Nondeterministic IDPDA: Size blow-up of determinization
- Unambiguous nondeterminism
 - $\blacktriangleright \ \text{nondeterministic} \longrightarrow \text{unambiguous} \longrightarrow \text{deterministic}$
- Limited nondeterminism
 - k-path NIDPDA and multiple entry DIDPDA
 - Determinizing k-path NIDPDAs
 - lower bounds for size blow-up
 - ★ nondeterministic \longrightarrow k-path \longrightarrow deterministic
 - Decision problems
 - * Does a given NIDPDA have the k-path property?

- Input-driven PDAs: historical background and definitions
 - Other equivalent models
- Nondeterministic IDPDA: Size blow-up of determinization
- Unambiguous nondeterminism
 - $\blacktriangleright \ \text{nondeterministic} \longrightarrow \text{unambiguous} \longrightarrow \text{deterministic}$
- Limited nondeterminism
 - k-path NIDPDA and multiple entry DIDPDA
 - Determinizing k-path NIDPDAs
 - lower bounds for size blow-up
 - ★ nondeterministic \longrightarrow k-path \longrightarrow deterministic
 - Decision problems
 - * Does a given NIDPDA have the k-path property?
- Open problems and further topics

Preliminaries

- A *pushdown automaton* reads input left-to-right and has access to finite-state memory and a pushdown stack.
- Each operation either reads a symbol from the stack (pop), pushes a string to the top of the stack (push) or does not change the stack. (Additionally, a PDA may have ε-transitions.)
- *Input-driven computation:* the input symbol determines whether the machines pushes or pops the stack, or does not touch the stack.

• every nondeterministic input-driven automaton (NIDPDA) can be determinized

()

- every nondeterministic input-driven automaton (NIDPDA) can be determinized
 - a (general) nondeterministic PDA does not have an equivalent deterministic PDA

- every nondeterministic input-driven automaton (NIDPDA) can be determinized
 - a (general) nondeterministic PDA does not have an equivalent deterministic PDA
- IDPDA retain many of the desirable closure and decision properties of finite automata
 - languages recognized by nondeterministic PDAs are not closed under intersection/complement

- every nondeterministic input-driven automaton (NIDPDA) can be determinized
 - a (general) nondeterministic PDA does not have an equivalent deterministic PDA
- IDPDA retain many of the desirable closure and decision properties of finite automata
 - languages recognized by nondeterministic PDAs are not closed under intersection/complement
 - equivalence (inclusion) of nondeterministic (deterministic) PDAs is undecidable

- every nondeterministic input-driven automaton (NIDPDA) can be determinized
 - a (general) nondeterministic PDA does not have an equivalent deterministic PDA
- IDPDA retain many of the desirable closure and decision properties of finite automata
 - languages recognized by nondeterministic PDAs are not closed under intersection/complement
 - equivalence (inclusion) of nondeterministic (deterministic) PDAs is undecidable
- Next we'll define IDPDA computations and after that will summarize basic IDPDA decision properties.

• $\Sigma = \Sigma_{+1} \cup \Sigma_0 \cup \Sigma_{-1}$: input alphabet;

- $\Sigma = \Sigma_{+1} \cup \Sigma_0 \cup \Sigma_{-1}$: input alphabet;
- Q: finite set of states;

- $\Sigma = \Sigma_{+1} \cup \Sigma_0 \cup \Sigma_{-1}$: input alphabet;
- Q: finite set of states;
- $q_0 \in Q$: initial state;

- $\Sigma = \Sigma_{+1} \cup \Sigma_0 \cup \Sigma_{-1}$: input alphabet;
- Q: finite set of states;
- $q_0 \in Q$: initial state;
- Γ: stack alphabet;

- $\Sigma = \Sigma_{+1} \cup \Sigma_0 \cup \Sigma_{-1}$: input alphabet;
- Q: finite set of states;
- $q_0 \in Q$: initial state;
- Γ: stack alphabet;
- $\bot \in \Gamma$: bottom stack symbol;

- $\Sigma = \Sigma_{+1} \cup \Sigma_0 \cup \Sigma_{-1}$: input alphabet;
- Q: finite set of states;
- $q_0 \in Q$: initial state;
- Γ: stack alphabet;
- $\bot \in \Gamma$: bottom stack symbol;
- $\delta_{<}: Q \rightarrow Q \times \Gamma$, for each $< \in \Sigma_{+1}$;

- $\Sigma = \Sigma_{+1} \cup \Sigma_0 \cup \Sigma_{-1}$: input alphabet;
- Q: finite set of states;
- $q_0 \in Q$: initial state;
- Γ: stack alphabet;
- $\bot \in \Gamma$: bottom stack symbol;
- $\delta_{<}: Q \rightarrow Q \times \Gamma$, for each $< \in \Sigma_{+1}$;
- $\delta_c: Q \to Q$, for each $c \in \Sigma_0$.

- $\Sigma = \Sigma_{+1} \cup \Sigma_0 \cup \Sigma_{-1}$: input alphabet;
- Q: finite set of states;
- $q_0 \in Q$: initial state;
- Γ: stack alphabet;
- $\bot \in \Gamma$: bottom stack symbol;
- $\delta_{<}: Q \rightarrow Q \times \Gamma$, for each $< \in \Sigma_{+1}$;
- $\delta_c: Q \to Q$, for each $c \in \Sigma_0$.
- $\delta_{>}: Q \times \Gamma \rightarrow Q$, for each $> \in \Sigma_{-1}$;
 - \perp is never popped.

- $\Sigma = \Sigma_{+1} \cup \Sigma_0 \cup \Sigma_{-1}$: input alphabet;
- Q: finite set of states;
- $q_0 \in Q$: initial state;
- Γ: stack alphabet;
- $\bot \in \Gamma$: bottom stack symbol;
- $\delta_{<}: Q \rightarrow Q \times \Gamma$, for each $< \in \Sigma_{+1}$;
- $\delta_c: Q \to Q$, for each $c \in \Sigma_0$.
- $\delta_{>}: Q \times \Gamma \rightarrow Q$, for each $> \in \Sigma_{-1}$;
 - \perp is never popped.
- $F \subseteq Q$: accepting states.

Computation of an IDPDA

A. Okhotin, K. Salomaa

IDPDA and Limited Nondeterminism

DLT 2014, Ekaterinburg

6 / 35

• Languages recognized in space $\frac{\log^2 n}{\log \log n}$ and poly time on TM (Mehlhorn, ICALP 1980).

- Languages recognized in space log log n
 and poly time on TM
 (Mehlhorn, ICALP 1980).
- ... in space log n and time $n^2 \log n$ (von Braunmühl, Verbeek, 1983).

- Languages recognized in space log log n
 and poly time on TM
 (Mehlhorn, ICALP 1980).
- ... in space log n and time $n^2 \log n$ (von Braunmühl, Verbeek, 1983).

Alternative proof (Rytter, 1986).

- Languages recognized in space log log n
 and poly time on TM
 (Mehlhorn, ICALP 1980).
- ... in space log n and time $n^2 \log n$ (von Braunmühl, Verbeek, 1983).
 - Alternative proof (Rytter, 1986).
- ... in NC^1 (Dymond, 1988).

- Languages recognized in space $\frac{\log^2 n}{\log \log n}$ and poly time on TM (Mehlhorn, ICALP 1980).
- ... in space log n and time $n^2 \log n$ (von Braunmühl, Verbeek, 1983).
 - Alternative proof (Rytter, 1986).
- ... in NC^1 (Dymond, 1988).
- Language-theoretic study (Alur, Madhusudan, STOC 2004).
 - Rediscovered as "visibly pushdown automata".

- Languages recognized in space $\frac{\log^2 n}{\log \log n}$ and poly time on TM (Mehlhorn, ICALP 1980).
- ... in space log n and time $n^2 \log n$ (von Braunmühl, Verbeek, 1983).
 - Alternative proof (Rytter, 1986).
- ... in NC^1 (Dymond, 1988).
- Language-theoretic study (Alur, Madhusudan, STOC 2004).
 - Rediscovered as "visibly pushdown automata".
 - Reinterpreted as "nested word automata" (Alur, Madhusudan, DLT 2006).

- Languages recognized in space $\frac{\log^2 n}{\log \log n}$ and poly time on TM (Mehlhorn, ICALP 1980).
- ... in space log n and time $n^2 \log n$ (von Braunmühl, Verbeek, 1983).
 - Alternative proof (Rytter, 1986).
- ... in NC^1 (Dymond, 1988).
- Language-theoretic study (Alur, Madhusudan, STOC 2004).
 - Rediscovered as "visibly pushdown automata".
 - Reinterpreted as "nested word automata" (Alur, Madhusudan, DLT 2006).
 - Descriptional complexity

- Languages recognized in space $\frac{\log^2 n}{\log \log n}$ and poly time on TM (Mehlhorn, ICALP 1980).
- ... in space log n and time $n^2 \log n$ (von Braunmühl, Verbeek, 1983).
 - Alternative proof (Rytter, 1986).
- ... in NC^1 (Dymond, 1988).
- Language-theoretic study (Alur, Madhusudan, STOC 2004).
 - Rediscovered as "visibly pushdown automata".
 - Reinterpreted as "nested word automata" (Alur, Madhusudan, DLT 2006).
 - Descriptional complexity
 - * Lower bound on size blow-up of determinization

- Languages recognized in space log log n
 and poly time on TM
 (Mehlhorn, ICALP 1980).
- ... in space log n and time $n^2 \log n$ (von Braunmühl, Verbeek, 1983).
 - Alternative proof (Rytter, 1986).
- ... in NC^1 (Dymond, 1988).
- Language-theoretic study (Alur, Madhusudan, STOC 2004).
 - Rediscovered as "visibly pushdown automata".
 - Reinterpreted as "nested word automata" (Alur, Madhusudan, DLT 2006).
 - Descriptional complexity
 - \star Lower bound on size blow-up of determinization
 - Closure under most standard language operations.

- Languages recognized in space log log n log log n and poly time on TM (Mehlhorn, ICALP 1980).
- ... in space log n and time $n^2 \log n$ (von Braunmühl, Verbeek, 1983).
 - Alternative proof (Rytter, 1986).
- ... in NC^1 (Dymond, 1988).
- Language-theoretic study (Alur, Madhusudan, STOC 2004).
 - Rediscovered as "visibly pushdown automata".
 - Reinterpreted as "nested word automata" (Alur, Madhusudan, DLT 2006).
 - Descriptional complexity
 - $\star\,$ Lower bound on size blow-up of determinization
 - Closure under most standard language operations.
- Much ongoing research motivated by new applications that use data with linear/hierarchical structure
Closure properties of central language families

	U	\cap	Complement	Concatenation	Kleene-*
Regular	Yes	Yes	Yes	Yes	Yes
CFL	Yes	No	No	Yes	Yes
DCFL	No	No	Yes	No	No
IDPDA	Yes	Yes	Yes	Yes	Yes

(D)CFL = (deterministic) context-free languages

Summary of decision properties

	Members	hip	Properties of a language		
	fixed	uniform	emptiness	equality	inclusion
DFA	regular	L	NL	NL	NL
NFA	regular	NL	NL	PSPACE	PSPACE
DIDPDA	in NC ¹	in SC^2	P	Р	Р
NIDPDA	in NC ¹	in P	P	EXPTIME	EXPTIME
DPDA	in $\mathrm{NC}^2 \cap \mathrm{SC}^2$	Р	Р	decidable	co-r.e.
CF	in NC ²	Р	P	co-r.e.	co-r.e.

- 一司

э

Summary of decision properties

	Members	hip	Properties of a language		
	fixed	uniform	emptiness	equality	inclusion
DFA	regular	L	NL	NL	NL
NFA	regular	NL	NL	PSPACE	PSPACE
DIDPDA	in NC ¹	in SC^2	P	Р	Р
NIDPDA	in NC ¹	in P	P	EXPTIME	EXPTIME
DPDA	in $\mathrm{NC}^2 \cap \mathrm{SC}^2$	Р	Р	decidable	co-r.e.
CF	in NC ²	Р	P	co-r.e.	co-r.e.

• Recent comprehensive survey:

A. Okhotin, K. Salomaa, *Complexity of Input-Driven Pushdown Automata,* SIGACT News Complexity Theory Column 82 (Lane A. Hemaspaandra, Ed.), vol. 45, no. 2, June 2014, pp. 46–67

The big picture: IDPDAs among formal grammars

Equivalent models: pushdown forest automata

- Pushdown forest automaton (Neumann & Seidl 1998)
 - traverses input tree in depth-first left-to-right order
 - machine pushes onto the stack when going down to the leftmost child
 - pops from the stack when returning from the rightmost child
- Equivalent to IDPDA (Gauwin, Niehren & Roos, 2008)
- Recognize only the class of regular tree languages. Are *exponentially more succinct* than ordinary bottom-up tree automata
- Earlier related work:
 - Engelfriet, Rozenberg & Slutzki (1980): tree-walking transducers with synchronized pushdown
 - Kamimura & Slutzki (1981): nondeterministic and deterministic variants of such graph walking automata with a synchronized pushdown are equivalent

Equivalent models: Nested word automata (Alur and Madhusudan, DLT 2006)

 A nested word is a tagged word with a hierarchical structure that connects call symbol occurrences to return symbol occurrences

- A *nested word automaton* "sends" finite state information both along the linear and the hierarchical edges
 - Equivalent to an IDPDA

Why nested words?

- Nested word automata used e.g. in XML document processing and model checking
 - Retains many desirable properties of the classical regular languages
- Advantages over trees in applications like document processing:
 - Word operations like prefix, suffix and concatenation do not have clear analogoues as tree operations
 - Trees do not have an *explicit* linear ordering of all nodes
 - ★ Descriptional complexity: for tree automata queries that refer to the global linear order can be more expensive

In the following we use the terminology associated with IDPDAs. The model is equivalent to a finite automaton operating on nested words.

Theorem (von Braunmühl & Verbeek (1983), Alur & Madhusudan (2006))

Every NIDPDA of size n has a deterministic IDPDA of size $2^{O(n^2)}$.

Theorem (von Braunmühl & Verbeek (1983), Alur & Madhusudan (2006))

Every NIDPDA of size n has a deterministic IDPDA of size $2^{O(n^2)}$.

Theorem (Alur, Madhusudan, 2006)

A DIDPDA equivalent to an NIDPDA of size n needs, in the worst case, $2^{\Omega(n^2)}$ states.

Theorem (von Braunmühl & Verbeek (1983), Alur & Madhusudan (2006))

Every NIDPDA of size n has a deterministic IDPDA of size $2^{O(n^2)}$.

Theorem (Alur, Madhusudan, 2006)

A DIDPDA equivalent to an NIDPDA of size n needs, in the worst case, $2^{\Omega(n^2)}$ states.

- The more precise constants in the lower bound remain open.
 - With a *constant alphabet* can reach lower bound $2^{\frac{1}{9}n^2}$

Theorem (von Braunmühl & Verbeek (1983), Alur & Madhusudan (2006))

Every NIDPDA of size n has a deterministic IDPDA of size $2^{O(n^2)}$.

Theorem (Alur, Madhusudan, 2006)

A DIDPDA equivalent to an NIDPDA of size n needs, in the worst case, $2^{\Omega(n^2)}$ states.

- The more precise constants in the lower bound remain open.
 - With a *constant alphabet* can reach lower bound $2^{\frac{1}{9}n^2}$
 - Linear size alphabet can reach $2^{\frac{1}{4}n^2}$

Theorem (von Braunmühl & Verbeek (1983), Alur & Madhusudan (2006))

Every NIDPDA of size n has a deterministic IDPDA of size $2^{O(n^2)}$.

Theorem (Alur, Madhusudan, 2006)

A DIDPDA equivalent to an NIDPDA of size n needs, in the worst case, $2^{\Omega(n^2)}$ states.

- The more precise constants in the lower bound remain open.
 - With a *constant alphabet* can reach lower bound $2^{\frac{1}{9}n^2}$
 - Linear size alphabet can reach $2^{\frac{1}{4}n^2}$
 - Exponential size alphabet can reach 2^{n²}

14 / 35

- The determinization construction does not depend on the number of stack symbols
 - ▶ NIDPDA with *n* states \rightarrow DIDPDA with 2^{n^2} states and $O(2^{n^2})$ stack symbols

- The determinization construction does not depend on the number of stack symbols
 - ▶ NIDPDA with *n* states \rightarrow DIDPDA with 2^{n^2} states and $O(2^{n^2})$ stack symbols
- In the lower bound construction, the equivalent DIDPDA does not use the stack, and could be replaced by a DFA of size $2^{\Omega(n^2)}$

- The determinization construction does not depend on the number of stack symbols
 - ▶ NIDPDA with *n* states \rightarrow DIDPDA with 2^{n^2} states and $O(2^{n^2})$ stack symbols
- In the lower bound construction, the equivalent DIDPDA does not use the stack, and could be replaced by a DFA of size $2^{\Omega(n^2)}$
- ✓ More refined lower bound for determinizing an NIDPDA.

15 / 35

- The determinization construction does not depend on the number of stack symbols
 - ▶ NIDPDA with *n* states \rightarrow DIDPDA with 2^{n^2} states and $O(2^{n^2})$ stack symbols
- In the lower bound construction, the equivalent DIDPDA does not use the stack, and could be replaced by a DFA of size $2^{\Omega(n^2)}$
- ✓ More refined lower bound for determinizing an NIDPDA.

Theorem (Okhotin, Piao & Salomaa, 2012)

For all $k, h \in \mathbb{N}$, $k \leq h$, there exists a language $L_{k,h}$ recognized by an NIDPDA with O(h) states and O(k) stack symbols such that any DIDPDA for $L_{k,h}$ needs $\Omega(2^{k \cdot h})$ states and $\Omega(2^{k^2})$ stack symbols.

- The determinization construction does not depend on the number of stack symbols
 - ▶ NIDPDA with *n* states \rightarrow DIDPDA with 2^{n^2} states and $O(2^{n^2})$ stack symbols
- In the lower bound construction, the equivalent DIDPDA does not use the stack, and could be replaced by a DFA of size $2^{\Omega(n^2)}$
- ✓ More refined lower bound for determinizing an NIDPDA.

Theorem (Okhotin, Piao & Salomaa, 2012)

For all $k, h \in \mathbb{N}$, $k \leq h$, there exists a language $L_{k,h}$ recognized by an NIDPDA with O(h) states and O(k) stack symbols such that any DIDPDA for $L_{k,h}$ needs $\Omega(2^{k \cdot h})$ states and $\Omega(2^{k^2})$ stack symbols.

• Tight bound with respect to both the number of states and the number of stack symbols (within a constant factor)

Lower bound: Let $\Sigma_{+1}=\{<\}$, $\Sigma_0=\{0,1,\#\},$ $\Sigma_{-1}=\{>\},$ consider all

 $< \ldots uv \ldots v > u$

with $u, v \in \{0, 1\}^{\log n}$. (markers # omitted here and later)

Lower bound: Let $\Sigma_{+1}=\{<\}$, $\Sigma_0=\{0,1,\#\},$ $\Sigma_{-1}=\{>\},$ consider all

 $< \ldots uv \ldots v > u$

with $u, v \in \{0, 1\}^{\log n}$. (markers # omitted here and later) • O(n)-state NIDPDA guesses u and pushes it.

Lower bound: Let $\Sigma_{+1}=\{<\}$, $\Sigma_0=\{0,1,\#\},$ $\Sigma_{-1}=\{>\},$ consider all

 $< \ldots uv \ldots v > u$

with $u, v \in \{0, 1\}^{\log n}$. (markers # omitted here and later)

- O(n)-state NIDPDA guesses u and pushes it.
- IDPDA has to remember all pairs (u, v).

Lower bound: Let $\Sigma_{+1}=\{<\}$, $\Sigma_0=\{0,1,\#\},$ $\Sigma_{-1}=\{>\},$ consider all

 $< \ldots uv \ldots v > u$

with $u, v \in \{0, 1\}^{\log n}$. (markers # omitted here and later)

- O(n)-state NIDPDA guesses u and pushes it.
- IDPDA has to remember all pairs (u, v).

Upper bound: Remember sets of pairs (q, q') on each level of brackets:

$$\ldots < \underbrace{\ldots}_{q \to q'} > \ldots$$

Commonly used form of limited nondeterminism

• "If a string is accepted, it has a unique accepting computation".

Commonly used form of limited nondeterminism

- "If a string is accepted, it has a unique accepting computation".
- In complexity theory:

$$L \subseteq UL \subseteq NL$$
 $P \subseteq UP \subseteq NP$

Commonly used form of limited nondeterminism

- "If a string is accepted, it has a unique accepting computation".
- In complexity theory:

$$L \subseteq UL \subseteq NL$$
 $P \subseteq UP \subseteq NP$

• In finite automata: DFA \rightarrow UFA \rightarrow NFA.

Commonly used form of limited nondeterminism

- "If a string is accepted, it has a unique accepting computation".
- In complexity theory:

$$L \subseteq UL \subseteq NL$$
 $P \subseteq UP \subseteq NP$

- In finite automata: DFA \rightarrow UFA \rightarrow NFA.
 - ▶ NFA–DFA tradeoff: 2ⁿ (Lupanov, 1963).

Commonly used form of limited nondeterminism

- "If a string is accepted, it has a unique accepting computation".
- In complexity theory:

$$L \subseteq UL \subseteq NL$$
 $P \subseteq UP \subseteq NP$

- In finite automata: DFA \rightarrow UFA \rightarrow NFA.
 - ▶ NFA–DFA tradeoff: 2ⁿ (Lupanov, 1963).
 - UFA–DFA and NFA–UFA tradeoffs: 2^n and $2^n 1$ (Hing Leung, 2005).

17 / 35

Commonly used form of limited nondeterminism

- "If a string is accepted, it has a unique accepting computation".
- In complexity theory:

$$L \subseteq UL \subseteq NL$$
 $P \subseteq UP \subseteq NP$

- In finite automata: DFA \rightarrow UFA \rightarrow NFA.
 - ▶ NFA–DFA tradeoff: 2ⁿ (Lupanov, 1963).
 - ▶ UFA–DFA and NFA–UFA tradeoffs: 2ⁿ and 2ⁿ − 1 (Hing Leung, 2005).
 - ► UFA-DFA and NFA-UFA tradeoffs for unary alphabet: $e^{\Theta(\sqrt[3]{n \ln^2 n})}$ and $e^{(1+o(1))\sqrt{n \ln n}}$ (Okhotin, 2010).

Commonly used form of limited nondeterminism

- "If a string is accepted, it has a unique accepting computation".
- In complexity theory:

$L \subseteq UL \subseteq NL$ $P \subseteq UP \subseteq NP$

- In finite automata: DFA \rightarrow UFA \rightarrow NFA.
 - ▶ NFA–DFA tradeoff: 2ⁿ (Lupanov, 1963).
 - ▶ UFA–DFA and NFA–UFA tradeoffs: 2ⁿ and 2ⁿ − 1 (Hing Leung, 2005).
 - ► UFA-DFA and NFA-UFA tradeoffs for unary alphabet: $e^{\Theta(\sqrt[3]{n \ln^2 n})}$ and $e^{(1+o(1))\sqrt{n \ln n}}$ (Okhotin, 2010).
- What about unambiguous IDPDAs (UIDPDA)?

Commonly used form of limited nondeterminism

- "If a string is accepted, it has a unique accepting computation".
- In complexity theory:

$L \subseteq UL \subseteq NL$ $P \subseteq UP \subseteq NP$

- In finite automata: DFA \rightarrow UFA \rightarrow NFA.
 - ▶ NFA–DFA tradeoff: 2ⁿ (Lupanov, 1963).
 - UFA–DFA and NFA–UFA tradeoffs: 2^n and $2^n 1$ (Hing Leung, 2005).
 - ► UFA-DFA and NFA-UFA tradeoffs for unary alphabet: $e^{\Theta(\sqrt[3]{n \ln^2 n})}$ and $e^{(1+o(1))\sqrt{n \ln n}}$ (Okhotin, 2010).
- What about unambiguous IDPDAs (UIDPDA)?

Theorem (Okhotin, Salomaa 2011)

The worst-case UIDPDA–DIDPDA and NIDPDA–UIDPDA trade-offs are both $2^{\Theta(n^2)}$.

• Upper bound: known for NIDPDA \rightarrow DIDPDA.

3

- Upper bound: known for NIDPDA \rightarrow DIDPDA.
- Let $\Sigma_{+1} = \{<\}, \ \Sigma_0 = \{0,1,\#,\$\}, \ \Sigma_{-1} = \{>\}, \ \text{consider all}$

 $< x_0 \dots x_\ell$ \$v > u

with $u, v \in \{0, 1\}^{\log n}$, where the $(v)_2$ -th bit in $x_{(u)_2}$ is 1.

- 3

- Upper bound: known for NIDPDA \rightarrow DIDPDA.
- Let $\Sigma_{+1} = \{<\}, \ \Sigma_0 = \{0,1,\#,\$\}, \ \Sigma_{-1} = \{>\}, \ \text{consider all}$

 $< x_0 \dots x_\ell$

with $u, v \in \{0, 1\}^{\log n}$, where the $(v)_2$ -th bit in $x_{(u)_2}$ is 1. • O(n)-state UIDPDA guesses u.

- Upper bound: known for NIDPDA \rightarrow DIDPDA.
- Let $\Sigma_{+1} = \{<\}, \ \Sigma_0 = \{0,1,\#,\$\}, \ \Sigma_{-1} = \{>\}, \ \text{consider all}$

 $< x_0 \dots x_\ell$

with $u, v \in \{0, 1\}^{\log n}$, where the $(v)_2$ -th bit in $x_{(u)_2}$ is 1.

- O(n)-state UIDPDA guesses u.
- IDPDA has to remember x_0, \ldots, x_{n-1} .

NIDPDA to an unambiguous IDPDA

Lower bound method for unambiguous IDPDAs

Lemma (Schmidt, 1978)

Let $L \subseteq \Sigma^*$ and $\{(x_1, y_1), \ldots, (x_n, y_n)\}$ with $x_i, y_i \in \Sigma^*$. Define $M \in \mathbb{Z}^{n \times n}$ by $M_{i,j} = 1$ if $x_i y_j \in L$, and $M_{i,j} = 0$ otherwise. Then every UFA for L has

 $|Q| \ge \operatorname{rank} M.$

NIDPDA to an unambiguous IDPDA

Lower bound method for unambiguous IDPDAs

Lemma (Schmidt, 1978)

Let $L \subseteq \Sigma^*$ and $\{(x_1, y_1), \ldots, (x_n, y_n)\}$ with $x_i, y_i \in \Sigma^*$. Define $M \in \mathbb{Z}^{n \times n}$ by $M_{i,j} = 1$ if $x_i y_j \in L$, and $M_{i,j} = 0$ otherwise. Then every UFA for L has

 $|Q| \ge \operatorname{rank} M.$

Lemma

Further assume that $|x_1|_{\Sigma_{+1}} = \ldots = |x_n|_{\Sigma_{+1}} = k$. Then every UIDPDA for L has

 $|Q| \cdot |\Gamma|^k \ge \operatorname{rank} M.$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

NIDPDA to an unambiguous IDPDA

Lower bound method for unambiguous IDPDAs

Lemma (Schmidt, 1978)

Let $L \subseteq \Sigma^*$ and $\{(x_1, y_1), \ldots, (x_n, y_n)\}$ with $x_i, y_i \in \Sigma^*$. Define $M \in \mathbb{Z}^{n \times n}$ by $M_{i,j} = 1$ if $x_i y_j \in L$, and $M_{i,j} = 0$ otherwise. Then every UFA for L has

 $|Q| \ge \operatorname{rank} M.$

Lemma

Further assume that $|x_1|_{\Sigma_{+1}} = \ldots = |x_n|_{\Sigma_{+1}} = k$. Then every UIDPDA for L has

 $|Q| \cdot |\Gamma|^k \ge \operatorname{rank} M.$

• To compute the rank, need a very simple matrix.

イロト イポト イヨト イヨト 二日
• Upper bound: known for NIDPDA \rightarrow IDPDA.

3

くほと くほと くほと

- Upper bound: known for NIDPDA \rightarrow IDPDA.
- Let $\Sigma_{+1} = \{<\}$, $\Sigma_0 = \{0, 1, \#, \$\}$, $\Sigma_{-1} = \{>\}$, consider

(*n* different *u*s and *v*s)

3

- Upper bound: known for NIDPDA \rightarrow IDPDA.
- Let $\Sigma_{+1}=\{<\}$, $\Sigma_0=\{0,1,\#,\$\}$, $\Sigma_{-1}=\{>\}$, consider

(*n* different *u*s and *v*s)

• O(n)-state NIDPDA guesses u.

3

- Upper bound: known for NIDPDA \rightarrow IDPDA.
- Let $\Sigma_{+1} = \{<\}$, $\Sigma_0 = \{0, 1, \#, \$\}$, $\Sigma_{-1} = \{>\}$, consider

(*n* different *u*s and *v*s)

- O(n)-state NIDPDA guesses u.
- Every UIDPDA requires $2^{\frac{n^2}{2}}$ states.

- Upper bound: known for NIDPDA \rightarrow IDPDA.
- Let $\Sigma_{+1} = \{<\}$, $\Sigma_0 = \{0, 1, \#, \$\}$, $\Sigma_{-1} = \{>\}$, consider

(*n* different *u*s and *v*s)

- O(n)-state NIDPDA guesses u.
- Every UIDPDA requires $2^{\frac{n^2}{2}}$ states.
 - Arrange n^2 pairs (u, v) into $\frac{n^2}{2}$ pairs.

$$\begin{array}{cccc} (u_1,v_1) & \longleftrightarrow & (u_1',v_1') \\ & \vdots \\ (u_{\frac{n^2}{2}},v_{\frac{n^2}{2}}) & \longleftrightarrow & (u_{\frac{n^2}{2}}',v_{\frac{n^2}{2}}') \end{array}$$

- Upper bound: known for NIDPDA \rightarrow IDPDA.
- Let $\Sigma_{+1} = \{<\}$, $\Sigma_0 = \{0, 1, \#, \$\}$, $\Sigma_{-1} = \{>\}$, consider

(n different us and vs)

- O(n)-state NIDPDA guesses u.
- Every UIDPDA requires $2^{\frac{n^2}{2}}$ states.
 - Arrange n^2 pairs (u, v) into $\frac{n^2}{2}$ pairs.

$$\begin{array}{cccc} (u_1,v_1) & \longleftrightarrow & (u_1',v_1') \\ & \vdots \\ (u_{\frac{n^2}{2}},v_{\frac{n^2}{2}}) & \longleftrightarrow & (u_{\frac{n^2}{2}}',v_{\frac{n^2}{2}}') \end{array}$$

Choose one from each line:

$$x_i = \langle all (u, v) chosen \rangle$$
 $y_i = all (u, v) not chosen \rangle$

- Upper bound: known for NIDPDA \rightarrow IDPDA.
- Let $\Sigma_{+1} = \{<\}$, $\Sigma_0 = \{0, 1, \#, \$\}$, $\Sigma_{-1} = \{>\}$, consider

(n different us and vs)

- O(n)-state NIDPDA guesses u.
- Every UIDPDA requires $2^{\frac{n^2}{2}}$ states.
 - Arrange n^2 pairs (u, v) into $\frac{n^2}{2}$ pairs.

$$\begin{array}{ccc} (u_1,v_1) & \longleftrightarrow & (u_1',v_1') \\ & \vdots \\ (u_{\frac{n^2}{2}},v_{\frac{n^2}{2}}) & \longleftrightarrow & (u_{\frac{n^2}{2}}',v_{\frac{n^2}{2}}') \end{array}$$

Choose one from each line:

$$x_i = \langle all (u, v) chosen$$
 $y_i = all (u, v) not chosen$

The matrix has full rank.

20 / 35

• UIDPDAs: unique accepting computation, otherwise *unlimited* nondeterminism.

- UIDPDAs: unique accepting computation, otherwise *unlimited* nondeterminism.
- Limit total amount of nondeterminism in NIDPDAs?
 - Analogous measures earlier considered for NFAs

- UIDPDAs: unique accepting computation, otherwise *unlimited* nondeterminism.
- Limit total amount of nondeterminism in NIDPDAs?
 - Analogous measures earlier considered for NFAs
- a *k-path* NIDPDA has at most *k*-branches in any computation tree

- UIDPDAs: unique accepting computation, otherwise *unlimited* nondeterminism.
- Limit total amount of nondeterminism in NIDPDAs?
 - Analogous measures earlier considered for NFAs
- a *k-path* NIDPDA has at most *k*-branches in any computation tree
 - ▶ an NIDPDA has *finite path property* if it is *k*-path for some $k \ge 1$

- UIDPDAs: unique accepting computation, otherwise *unlimited* nondeterminism.
- Limit total amount of nondeterminism in NIDPDAs?
 - Analogous measures earlier considered for NFAs
- a *k-path* NIDPDA has at most *k*-branches in any computation tree
 - ▶ an NIDPDA has finite path property if it is k-path for some $k \ge 1$
- multiple-entry IDPDA: a DIDPDA with $k \ge 1$ initial states

- UIDPDAs: unique accepting computation, otherwise *unlimited* nondeterminism.
- Limit total amount of nondeterminism in NIDPDAs?
 - Analogous measures earlier considered for NFAs
- a *k-path* NIDPDA has at most *k*-branches in any computation tree
 - ▶ an NIDPDA has finite path property if it is k-path for some $k \ge 1$
- multiple-entry IDPDA: a DIDPDA with $k \ge 1$ initial states
 - k-entry DIDPDA is a (very restricted) k-path NIDPDA

- UIDPDAs: unique accepting computation, otherwise *unlimited* nondeterminism.
- Limit total amount of nondeterminism in NIDPDAs?
 - Analogous measures earlier considered for NFAs
- a *k-path* NIDPDA has at most *k*-branches in any computation tree
 - ▶ an NIDPDA has finite path property if it is k-path for some $k \ge 1$
- multiple-entry IDPDA: a DIDPDA with $k \ge 1$ initial states
 - k-entry DIDPDA is a (very restricted) k-path NIDPDA
- Formal definitions in the proceedings.

Lemma

Lemma

A k-entry DIDPDA A with n states and m stack symbols simulated by a DIDPDA B with $(n + 1)^k - 1$ states and m^k stack symbols.

• B simulates k computations.

Lemma

- B simulates k computations.
- *B* uses *k*-tuples of states.

Lemma

- B simulates k computations.
- *B* uses *k*-tuples of states.

Lemma

- B simulates k computations.
- *B* uses *k*-tuples of states.
- *B* pushes *k*-tuples of stack symbols.

Lemma

A k-entry DIDPDA A with n states and m stack symbols simulated by a DIDPDA B with $(n + 1)^k - 1$ states and m^k stack symbols.

- B simulates k computations.
- *B* uses *k*-tuples of states.
- *B* pushes *k*-tuples of stack symbols.

22 / 35

Lemma

- B simulates k computations.
- *B* uses *k*-tuples of states.
- *B* pushes *k*-tuples of stack symbols.
- each state matched to a corresponding stack symbol.

Lemma

Lemma

A k-path NIDPDA A with n states and m stack symbols simulated by a DIDPDA B with $\sum_{i=1}^{k} (n+1)^{i} \cdot i^{i}$ states and $\sum_{i=1}^{k} m^{i}$ stack symbols.

• Begins with $k_0 \leq k$ computations.

Lemma

- Begins with $k_0 \leq k$ computations.
- New computations may emerge at each step.

Lemma

- Begins with $k_0 \leq k$ computations.
- New computations may emerge at each step.
- Pushes *l*-tuples.

Lemma

- Begins with $k_0 \leq k$ computations.
- New computations may emerge at each step.
- Pushes ℓ -tuples.
- May branch inside the brackets.

Lemma

- Begins with $k_0 \leq k$ computations.
- New computations may emerge at each step.
- Pushes ℓ -tuples.
- May branch inside the brackets.
- How to match ℓ' > ℓ states to ℓ symbols?

Lemma

A k-path NIDPDA A with n states and m stack symbols simulated by a DIDPDA B with $\sum_{i=1}^{k} (n+1)^{i} \cdot i^{i}$ states and $\sum_{i=1}^{k} m^{i}$ stack symbols.

- Begins with $k_0 \leq k$ computations.
- New computations may emerge at each step.
- Pushes ℓ -tuples.
- May branch inside the brackets.
- How to match ℓ' > ℓ states to ℓ symbols?

✓ Mark each component with the number of parent component.

Lemma

A k-path NIDPDA A with n states and m stack symbols simulated by a DIDPDA B with $\sum_{i=1}^{k} (n+1)^{i} \cdot i^{i}$ states and $\sum_{i=1}^{k} m^{i}$ stack symbols.

- Begins with $k_0 \leq k$ computations.
- New computations may emerge at each step.
- Pushes ℓ -tuples.
- May branch inside the brackets.
- How to match ℓ' > ℓ states to ℓ symbols?

✓ Mark each component with the number of parent component.

Lemma

A k-path NIDPDA A with n states and m stack symbols simulated by a DIDPDA B with $\sum_{i=1}^{k} (n+1)^{i} \cdot i^{i}$ states and $\sum_{i=1}^{k} m^{i}$ stack symbols.

- Begins with $k_0 \leq k$ computations.
- New computations may emerge at each step.
- Pushes ℓ -tuples.
- May branch inside the brackets.
- How to match ℓ' > ℓ states to ℓ symbols?

✓ Mark each component with the number of parent component.

Lemma

- Begins with $k_0 \leq k$ computations.
- New computations may emerge at each step.
- Pushes ℓ -tuples.
- May branch inside the brackets.
- How to match ℓ' > ℓ states to ℓ symbols?

- $\checkmark\,$ Mark each component with the number of parent component.
- Use these data to match ℓ symbols to ℓ' states.

Lower bound on size blow-up of determinization

- For *k*-entry DIDPDAs, tight lower bound.
- The alphabet depends on *n* and *k*.

Lemma

For every $k \ge 1$ and $n \ge k$, there exists an alphabet $\Sigma^{k,n}$ and a language $L_{k,n}$ over $\Sigma^{k,n}$ recognized by a k-entry DIDPDA with n states and k stack symbols, such that any DIDPDA for $L_{k,n}$ needs $(n + 1)^k - 1$ states.

Lower bound on size blow-up of determinization

- For *k*-entry DIDPDAs, tight lower bound.
- The alphabet depends on *n* and *k*.

Lemma

For every $k \ge 1$ and $n \ge k$, there exists an alphabet $\Sigma^{k,n}$ and a language $L_{k,n}$ over $\Sigma^{k,n}$ recognized by a k-entry DIDPDA with n states and k stack symbols, such that any DIDPDA for $L_{k,n}$ needs $(n + 1)^k - 1$ states.

• the alphabet has one left bracket <, one right bracket >, and a large number of neutral symbols $\Sigma_0^{k,n} = X_{\mathrm{func}} \cup Y_{\mathrm{func}}$, where

$$X_{\text{func}} = \{ a_f \mid f \colon \{1, \dots, k\} \rightarrow \{1, \dots, n, \text{undefined}\} \}$$

•
$$Y_{\text{func}} = \{ b_g \mid g \colon \{1, \ldots, n\} \rightarrow \{1, \ldots, k, \text{undefined}\} \}$$

Lower bound language (proof continued)

$$\widehat{L}_{k,n} = \{ < a_f b_g > | a_f, b_g \in \Sigma_0^{k,n}, \exists s \in \{1, \ldots, k\} : g(f(s)) = s \}.$$

э

- < ∃ →

Lower bound language (proof continued)

$$\widehat{L}_{k,n} = \{ < a_f b_g > | a_f, b_g \in \Sigma_0^{k,n}, \exists s \in \{1, \ldots, k\} : g(f(s)) = s \}.$$

• strings of $\hat{L}_{k,n}$ consist of two symbols indexed by functions whose composition has a fixed point

Lower bound language (proof continued)

$$\widehat{L}_{k,n} = \{ < a_f b_g > | a_f, b_g \in \Sigma_0^{k,n}, \exists s \in \{1, \ldots, k\} : g(f(s)) = s \}.$$

- strings of $\hat{L}_{k,n}$ consist of two symbols indexed by functions whose composition has a fixed point
- a string of the form $<\!a_f b_g\!>(f\in X_{\mathrm{func}},\,g\in Y_{\mathrm{func}})$ is said to be well-formed
Lower bound language (proof continued)

$$\widehat{L}_{k,n} = \{ < a_f b_g > | a_f, b_g \in \Sigma_0^{k,n}, \exists s \in \{1, \ldots, k\} : g(f(s)) = s \}.$$

- strings of $\hat{L}_{k,n}$ consist of two symbols indexed by functions whose composition has a fixed point
- a string of the form $<\!a_f b_g\!>(f\in X_{\mathrm{func}},\,g\in Y_{\mathrm{func}})$ is said to be well-formed
- a k-entry DIDPDA A with n states and k stack symbols that accepts well-formed strings from $\hat{L}_{k,n}$ (as well as some ill-formed strings)
 - ▶ a k-entry DIDPDA for $\hat{L}_{k,n}$ would need more states

(somewhat simplified definition)

A set $S = \{ < x_1, \ldots < x_m \}$, $x_1, \ldots, x_m \in \Sigma_0^*$, is a 1-separator set for language L if

- each $\langle x_i$ is a prefix of some string in L,
- for all $i \neq j$, there exists $w_{i,j} \in \Sigma^*$ such that exactly one of $x_i w_{i,j}$ and $x_j w_{i,j}$ is in *L*.

(somewhat simplified definition)

A set $S = \{ < x_1, \ldots < x_m \}$, $x_1, \ldots, x_m \in \Sigma_0^*$, is a 1-separator set for language L if

- each $\langle x_i$ is a prefix of some string in L,
- for all $i \neq j$, there exists $w_{i,j} \in \Sigma^*$ such that exactly one of $x_i w_{i,j}$ and $x_j w_{i,j}$ is in *L*.
- Separator sets are analogous to the notion of fooling sets used to prove lower bounds for NFAs.

(somewhat simplified definition)

A set $S = \{ < x_1, \ldots < x_m \}$, $x_1, \ldots, x_m \in \Sigma_0^*$, is a 1-separator set for language L if

- each $\langle x_i$ is a prefix of some string in L,
- for all $i \neq j$, there exists $w_{i,j} \in \Sigma^*$ such that exactly one of $x_i w_{i,j}$ and $x_j w_{i,j}$ is in *L*.
- Separator sets are analogous to the notion of fooling sets used to prove lower bounds for NFAs.
- The definition used here is more specialized.

(somewhat simplified definition)

A set $S = \{ < x_1, \ldots < x_m \}$, $x_1, \ldots, x_m \in \Sigma_0^*$, is a 1-separator set for language L if

- each $\langle x_i$ is a prefix of some string in L,
- for all $i \neq j$, there exists $w_{i,j} \in \Sigma^*$ such that exactly one of $x_i w_{i,j}$ and $x_j w_{i,j}$ is in *L*.
- Separator sets are analogous to the notion of fooling sets used to prove lower bounds for NFAs.
- The definition used here is more specialized.

Lemma

If L has a separator set of cardinality m, then any DIDPDA of L must have at least m states.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

(somewhat simplified definition)

A set $S = \{ < x_1, \ldots < x_m \}$, $x_1, \ldots, x_m \in \Sigma_0^*$, is a 1-separator set for language L if

- each $\langle x_i$ is a prefix of some string in L,
- for all $i \neq j$, there exists $w_{i,j} \in \Sigma^*$ such that exactly one of $x_i w_{i,j}$ and $x_j w_{i,j}$ is in *L*.
- Separator sets are analogous to the notion of fooling sets used to prove lower bounds for NFAs.
- The definition used here is more specialized.

Lemma

If L has a separator set of cardinality m, then any DIDPDA of L must have at least m states.

• Proof is straightforward.

- 3

イロト 不得下 イヨト イヨト

(lower bound proof continued)

$$\widehat{L}_{k,n} = \{ < a_f b_g > | a_f, b_g \in \Sigma_0^{k,n}, \exists s \in \{1, \ldots, k\} : g(f(s)) = s \}.$$

Separator set:

$$S = \{ \langle a_f \mid a_f \in X_{\text{func}}, \exists i \in \{1, \dots, k\} : f(i) \text{ is defined} \}$$

3. 3

(lower bound proof continued)

$$\widehat{L}_{k,n} = \{ < a_f b_g > | a_f, b_g \in \Sigma_0^{k,n}, \exists s \in \{1, \dots, k\} : g(f(s)) = s \}.$$

Separator set:

$$S = \{ < a_f \mid a_f \in X_{\text{func}}, \exists i \in \{1, \dots, k\} : f(i) \text{ is defined} \}$$

• consider two distinct strings $<\!a_{f_1}, <\!a_{f_2} \in S$, with $f_1
eq f_2$

(lower bound proof continued)

$$\widehat{L}_{k,n} = \{ < a_f b_g > | a_f, b_g \in \Sigma_0^{k,n}, \exists s \in \{1, \ldots, k\} : g(f(s)) = s \}.$$

Separator set:

$$S = \{ < a_f \mid a_f \in X_{\text{func}}, \ \exists i \in \{1, \dots, k\} : \ f(i) \text{ is defined} \}$$

- consider two distinct strings $<\!a_{f_1}, <\!a_{f_2} \in S$, with $f_1
 eq f_2$
- there exists i for which $f_1(i)$ is defined and $f_2(i) \neq f_1(i)$ (or vice versa)

(lower bound proof continued)

$$\widehat{L}_{k,n} = \{ < a_f b_g > | a_f, b_g \in \Sigma_0^{k,n}, \exists s \in \{1, \ldots, k\} : g(f(s)) = s \}.$$

Separator set:

$$S = \{ < a_f \mid a_f \in X_{\text{func}}, \ \exists i \in \{1, \dots, k\} : \ f(i) \text{ is defined} \}$$

- consider two distinct strings $<\!a_{f_1},<\!a_{f_2}\in S$, with $f_1
 eq f_2$
- there exists *i* for which $f_1(i)$ is defined and $f_2(i) \neq f_1(i)$ (or vice versa)

define

$$g(j) = \begin{cases} i, & \text{if } j = f_1(i), \\ \text{undefined}, & \text{otherwise.} \end{cases}$$

(lower bound proof continued)

$$\widehat{L}_{k,n} = \{ < a_f b_g > | a_f, b_g \in \Sigma_0^{k,n}, \exists s \in \{1, \ldots, k\} : g(f(s)) = s \}.$$

Separator set:

$$S = \{ < a_f \mid a_f \in X_{\text{func}}, \ \exists i \in \{1, \dots, k\} : \ f(i) \text{ is defined} \}$$

- consider two distinct strings $<\!a_{f_1},<\!a_{f_2}\in S$, with $f_1
 eq f_2$
- there exists *i* for which $f_1(i)$ is defined and $f_2(i) \neq f_1(i)$ (or vice versa)

define

$$g(j) = \left\{egin{array}{cc} i, & ext{if } j = f_1(i), \\ ext{undefined}, & ext{otherwise}. \end{array}
ight.$$

 $\bullet \ <\!\! a_{f_1}b_g\! > \in \widehat{L}_{k,n} \text{ and } <\!\! a_{f_2}b_g\! > \not\in \widehat{L}_{k,n}$

• For k-entry DIDPDAs the bound is tight

Theorem

 A k-entry DIDPDA with n states and m stack symbols can be simulated by a DIDPDA with (n + 1)^k - 1 states and m^k stack symbols.

• For k-entry DIDPDAs the bound is tight

Theorem

- A k-entry DIDPDA with n states and m stack symbols can be simulated by a DIDPDA with (n + 1)^k - 1 states and m^k stack symbols.
- For every $n \ge k$, there exists a k-entry DIDPDA with n states and k stack symbols, defined over an alphabet depending on n and k, such that any equivalent DIDPDA needs at least $(n + 1)^k 1$ states.

• For k-entry DIDPDAs the bound is tight

Theorem

- A k-entry DIDPDA with n states and m stack symbols can be simulated by a DIDPDA with (n + 1)^k - 1 states and m^k stack symbols.
- For every $n \ge k$, there exists a k-entry DIDPDA with n states and k stack symbols, defined over an alphabet depending on n and k, such that any equivalent DIDPDA needs at least $(n + 1)^k 1$ states.
- Above lower bound uses a growing alphabet.

• For k-entry DIDPDAs the bound is tight

Theorem

- A k-entry DIDPDA with n states and m stack symbols can be simulated by a DIDPDA with (n + 1)^k - 1 states and m^k stack symbols.
- For every $n \ge k$, there exists a k-entry DIDPDA with n states and k stack symbols, defined over an alphabet depending on n and k, such that any equivalent DIDPDA needs at least $(n + 1)^k 1$ states.
- Above lower bound uses a growing alphabet.
- For 6-symbol alphabet: lower bound $(\frac{n}{4})^k$ on the size of a DIDPDA simulating a k-entry automaton with n states and k stack symbols.

For a k-path NIDPDA with n states and m stack symbols:

• upper bound:

$$\sum_{i=1}^k (n+1)^i \cdot i^i$$
 states and $\sum_{i=1}^k m^i$ stack symbols.

For a k-path NIDPDA with n states and m stack symbols:

• upper bound:

$$\sum_{i=1}^k (n+1)^i \cdot i^i$$
 states and $\sum_{i=1}^k m^i$ stack symbols.

• lower bound: $(n+1)^k - 1$ states

For a k-path NIDPDA with n states and m stack symbols:

• upper bound:

$$\sum_{i=1}^k (n+1)^i \cdot i^i$$
 states and $\sum_{i=1}^k m^i$ stack symbols.

- lower bound: $(n+1)^k 1$ states
- The lower bound uses a k-entry DIDPDA (discussed above).

29 / 35

For a k-path NIDPDA with n states and m stack symbols:

• upper bound:

$$\sum_{i=1}^k (n+1)^i \cdot i^i$$
 states and $\sum_{i=1}^k m^i$ stack symbols.

• lower bound:
$$(n+1)^k - 1$$
 states

- The lower bound uses a k-entry DIDPDA (discussed above).
- Open questions:
 - Can the lower bound be improved for general k-entry DIDPDA?
 - Can the upper bound construction be improved?

Theorem

For any $k \ge 1$, the worst-case number of states in a k-path NIDPDA equivalent to an NIDPDA with n states is $2^{\Theta(n^2)}$.

Proof inspired by an argument by Goldstine, Kintala and Wotschke (1990) for NFAs with finite branching:

12 N 4 12 N

Theorem

For any $k \ge 1$, the worst-case number of states in a k-path NIDPDA equivalent to an NIDPDA with n states is $2^{\Theta(n^2)}$.

Proof inspired by an argument by Goldstine, Kintala and Wotschke (1990) for NFAs with finite branching:

 Let A be an NIDPDA with "maximal" size blow-up for determinization.

Theorem

For any $k \ge 1$, the worst-case number of states in a k-path NIDPDA equivalent to an NIDPDA with n states is $2^{\Theta(n^2)}$.

Proof inspired by an argument by Goldstine, Kintala and Wotschke (1990) for NFAs with finite branching:

- Let A be an NIDPDA with "maximal" size blow-up for determinization.
- Consider the language $(L(A))^*$

Theorem

For any $k \ge 1$, the worst-case number of states in a k-path NIDPDA equivalent to an NIDPDA with n states is $2^{\Theta(n^2)}$.

Proof inspired by an argument by Goldstine, Kintala and Wotschke (1990) for NFAs with finite branching:

- Let A be an NIDPDA with "maximal" size blow-up for determinization.
- Consider the language $(L(A))^*$
- k-path NIDPDA for (\$L(A)\$)* cannot be smaller than a minimal DIDPDA.

• The *k*-path property of an NIDPDA refers to its computations on all possible inputs

- The *k*-path property of an NIDPDA refers to its computations on all possible inputs
 - given the syntactic specification of an NIDPDA A, it is not at all clear whether or not A has this property

- The *k*-path property of an NIDPDA refers to its computations on all possible inputs
 - given the syntactic specification of an NIDPDA A, it is not at all clear whether or not A has this property

Lemma

Given an NIDPDA A with n states and a number $k \ge 1$, one can decide in time $poly(k^k \cdot n^k)$ whether or not A has the k-path property.

- The *k*-path property of an NIDPDA refers to its computations on all possible inputs
 - given the syntactic specification of an NIDPDA A, it is not at all clear whether or not A has this property

Lemma

Given an NIDPDA A with n states and a number $k \ge 1$, one can decide in time $poly(k^k \cdot n^k)$ whether or not A has the k-path property.

- Algorithm constructs a DIDPDA *B* which accepts input *w* if *A* has more than *k* computations on *w*
 - decide emptiness for B (in polynomial time)

- The *k*-path property of an NIDPDA refers to its computations on all possible inputs
 - given the syntactic specification of an NIDPDA A, it is not at all clear whether or not A has this property

Lemma

Given an NIDPDA A with n states and a number $k \ge 1$, one can decide in time $poly(k^k \cdot n^k)$ whether or not A has the k-path property.

- Algorithm constructs a DIDPDA *B* which accepts input *w* if *A* has more than *k* computations on *w*
 - decide emptiness for B (in polynomial time)

Theorem

For a fixed $k \ge 1$, checking whether or not a given NIDPDA has the *k*-path property is P-complete.

イロト 不得下 イヨト イヨト

- The *k*-path property of an NIDPDA refers to its computations on all possible inputs
 - given the syntactic specification of an NIDPDA A, it is not at all clear whether or not A has this property

Lemma

Given an NIDPDA A with n states and a number $k \ge 1$, one can decide in time $poly(k^k \cdot n^k)$ whether or not A has the k-path property.

- Algorithm constructs a DIDPDA *B* which accepts input *w* if *A* has more than *k* computations on *w*
 - decide emptiness for B (in polynomial time)

Theorem

For a fixed $k \ge 1$, checking whether or not a given NIDPDA has the k-path property is P-complete.

• Proof uses reduction from DIDPDA emptiness problem (in logspace)

(with the value of k arbitrary)

• Finite path property for NFAs can be determined by analyzing the transition graph

(with the value of k arbitrary)

- Finite path property for NFAs can be determined by analyzing the transition graph
- The method does not work in the precense of stack operations

(with the value of k arbitrary)

- Finite path property for NFAs can be determined by analyzing the transition graph
- The method does not work in the precense of stack operations
 - ▶ It is undecidable whether a (general) nondeterministic PDA is 3-path

(with the value of k arbitrary)

- Finite path property for NFAs can be determined by analyzing the transition graph
- The method does not work in the precense of stack operations
 - ▶ It is undecidable whether a (general) nondeterministic PDA is 3-path

Open problem

Is it decidable whether or not a given NIDPDA has the finite path property?

Conclusion

Main open problems:

• What is the precise size blow-up of determinizing k-path NIDPDAs ?

Conclusion

Main open problems:

- What is the precise size blow-up of determinizing k-path NIDPDAs ?
- Can the finite path property be decided effectively ?
 - Not just a question of complexity even the decidability status of the question is open

Conclusion

Main open problems:

- What is the precise size blow-up of determinizing k-path NIDPDAs ?
- Can the finite path property be decided effectively ?
 - Not just a question of complexity even the decidability status of the question is open
- The amount of nondeterminism can be limited by a function on input length (analogously as has been done with NFAs). Questions:
Main open problems:

- What is the precise size blow-up of determinizing k-path NIDPDAs ?
- Can the finite path property be decided effectively ?
 - Not just a question of complexity even the decidability status of the question is open
- The amount of nondeterminism can be limited by a function on input length (analogously as has been done with NFAs). Questions:
 - Descriptional complexity of determinization

Main open problems:

- What is the precise size blow-up of determinizing k-path NIDPDAs ?
- Can the finite path property be decided effectively ?
 - Not just a question of complexity even the decidability status of the question is open
- The amount of nondeterminism can be limited by a function on input length (analogously as has been done with NFAs). Questions:
 - Descriptional complexity of determinization
 - Characterization of possible nondeterminism growth rates for an NIDPDA

Extended models

 Alternating input-driven pushdown automata L. Bozzelli (2007), C. Dax, F. Klaedtke (2011), M. Schuster, T. Schwentick (2014)

- Alternating input-driven pushdown automata L. Bozzelli (2007), C. Dax, F. Klaedtke (2011), M. Schuster, T. Schwentick (2014)
 - Non-emptiness for alternating IDPDA is complete for doubly exponential time (Bozzelli 2007)

- Alternating input-driven pushdown automata L. Bozzelli (2007), C. Dax, F. Klaedtke (2011), M. Schuster, T. Schwentick (2014)
 - Non-emptiness for alternating IDPDA is complete for doubly exponential time (Bozzelli 2007)
 - Uniform membership for alternating IDPDA is PSPACE-complete (Schuster & Schwentick 2014)

- Alternating input-driven pushdown automata L. Bozzelli (2007), C. Dax, F. Klaedtke (2011), M. Schuster, T. Schwentick (2014)
 - Non-emptiness for alternating IDPDA is complete for doubly exponential time (Bozzelli 2007)
 - Uniform membership for alternating IDPDA is PSPACE-complete (Schuster & Schwentick 2014)
 - Open: What is the descriptional complexity trade-off between alternating IDPDAs and nondeterministic (resp. deterministic) IDPDAs

- Alternating input-driven pushdown automata L. Bozzelli (2007), C. Dax, F. Klaedtke (2011), M. Schuster, T. Schwentick (2014)
 - Non-emptiness for alternating IDPDA is complete for doubly exponential time (Bozzelli 2007)
 - Uniform membership for alternating IDPDA is PSPACE-complete (Schuster & Schwentick 2014)
 - Open: What is the descriptional complexity trade-off between alternating IDPDAs and nondeterministic (resp. deterministic) IDPDAs
- Two-way input-driven pushdown automata

- Alternating input-driven pushdown automata L. Bozzelli (2007), C. Dax, F. Klaedtke (2011), M. Schuster, T. Schwentick (2014)
 - Non-emptiness for alternating IDPDA is complete for doubly exponential time (Bozzelli 2007)
 - Uniform membership for alternating IDPDA is PSPACE-complete (Schuster & Schwentick 2014)
 - Open: What is the descriptional complexity trade-off between alternating IDPDAs and nondeterministic (resp. deterministic) IDPDAs
- Two-way input-driven pushdown automata
 - Natural definition of 2-way IDPDA: when moving right-to-left, the automaton pushes at symbols of Σ₋₁ and pops at symbols of Σ₊₁

- Alternating input-driven pushdown automata L. Bozzelli (2007), C. Dax, F. Klaedtke (2011), M. Schuster, T. Schwentick (2014)
 - Non-emptiness for alternating IDPDA is complete for doubly exponential time (Bozzelli 2007)
 - Uniform membership for alternating IDPDA is PSPACE-complete (Schuster & Schwentick 2014)
 - Open: What is the descriptional complexity trade-off between alternating IDPDAs and nondeterministic (resp. deterministic) IDPDAs
- Two-way input-driven pushdown automata
 - Natural definition of 2-way IDPDA: when moving right-to-left, the automaton pushes at symbols of Σ₋₁ and pops at symbols of Σ₊₁
 - The class of recognized languages remains the same

- Alternating input-driven pushdown automata L. Bozzelli (2007), C. Dax, F. Klaedtke (2011), M. Schuster, T. Schwentick (2014)
 - Non-emptiness for alternating IDPDA is complete for doubly exponential time (Bozzelli 2007)
 - Uniform membership for alternating IDPDA is PSPACE-complete (Schuster & Schwentick 2014)
 - Open: What is the descriptional complexity trade-off between alternating IDPDAs and nondeterministic (resp. deterministic) IDPDAs
- Two-way input-driven pushdown automata
 - Natural definition of 2-way IDPDA: when moving right-to-left, the automaton pushes at symbols of Σ₋₁ and pops at symbols of Σ₊₁
 - The class of recognized languages remains the same
 - Descriptional complexity of 2-way IDPDA to 1-way IDPDA conversion

Extended models

- Alternating input-driven pushdown automata L. Bozzelli (2007), C. Dax, F. Klaedtke (2011), M. Schuster, T. Schwentick (2014)
 - Non-emptiness for alternating IDPDA is complete for doubly exponential time (Bozzelli 2007)
 - Uniform membership for alternating IDPDA is PSPACE-complete (Schuster & Schwentick 2014)
 - Open: What is the descriptional complexity trade-off between alternating IDPDAs and nondeterministic (resp. deterministic) IDPDAs
- Two-way input-driven pushdown automata
 - Natural definition of 2-way IDPDA: when moving right-to-left, the automaton pushes at symbols of Σ₋₁ and pops at symbols of Σ₊₁
 - The class of recognized languages remains the same
 - Descriptional complexity of 2-way IDPDA to 1-way IDPDA conversion
 - Complexity of decision problems

イロト 不得下 イヨト イヨト

Questions?

DLT 2014, Ekaterinburg

-

35 / 35

3