

Debates with small transparent
quantum verifiers

Abuzer Yakaryılmaz
National Laboratory for Scientific Computing, Brazil

A. C. Cem Say
Bogazici University, Turkey

H. Gokalp Demirci
University of Chicago, USA

DLT 2014 (Ekaterinburg)
August 26, 2014

A short review of nondeterministic
and alternating machines

Alternating finite automata

●There are four types of states:
● Existential states
● Universal states
● Accepting states
● Rejecting states

● The given input is written on a tape between two
end-markers.

● The head is on the left end-marker and the state is
the initial one at the beginning of the computation.

● The computation can split more than one branch.
● (s,σ)→Powerset(s',d), where d⋲{←,↓,→}.

● The input is accepted (rejected) if the automaton
enters an accepting (a rejecting) states

Initial configuration

halting configurations
accepting or rejecting?

Computation tree for
nondeterministic machines

Computation tree for alternating
machines

Initial configuration

halting configurations
accepting or rejecting?

not only OR () operator
but also AND () operator

Additional property:

An AND node takes
the value of ‘TRUE’
if all of its children
have the value of

‘TRUE’

The computation in each path
is deterministic!

How can we define
bounded-error

nondeterminism or alternation?

nondeterministic machine
≡

deterministic verification

Similarly, we can define probabilistic
verification or quantum verification!

a proof system (a two person game)

For a given language L,
the deterministic machine (we call it verifier) can

interact with a prover (access a proof) to determine
the membership of a given input string.

●For the members, the verifier accepts the input.
(There exists a valid proof for a true statement!)

●For the non-members, none of the provers
convince the verifier and so the verifier rejects input.
(There exists no proof for a false statements!)

Probabilistic verification:

The verifier is a probabilistic machine!
● Depending on different branches, different

interactions can happen with the prover.
● The verifier can hide its probabilistic choices:

Private-coin interactive proof system
● Otherwise, it is called:

Public-coin interactive proof systems
or, Arthur-Merlin games

NP is the class of languages whose
memberships are verified in polynomial time

deterministically.

Polynomial time probabilistic (quantum)
verification defines the class PSPACE.

Space-bounded verification:

There is no restriction on time but on space.

The “simplest” case: The verifier is a finite
state automaton.

2PFA (two-way probabilistic finite automaton):
● It can recognize the following language with

bounded-error.

{an1bn1an2bn2⋯ankbnk∣k≥0 }

Any Turing recognizable language can be recognized
by a two-way deterministic finite automaton with two
counters (2D2CA).

A proof system having a 2PFA as verifier can
simulate the computation of a 2D2CA on a given
input string:

● The prover sends the contents of the counters to
the verifier and the 2PFA can execute a similar
algorithm.

● The drawback: For the non-members, the
computation might not be halted. Such proof
systems are called “weak”.

Public-coin proof systems are not powerful as
private-coin ones!

ArthurMerlin(2PFA) does not contain the
language of palindromes and it is a proper

subset of P even in weak case!

Two-way finite automaton having a constant
size quantum register (2QCFA):

They can recognize the following language:
● The members are accepted exactly!

{w1 cw1cw2w2 c⋯cwk cw k∣wi∈{a ,b }* , k≥0 }

Arthur Merlin proof system having
2QCFAs as verifiers:

●The prover can send the configurations of a
Turing machine on a given input!

● The members are accepted exactly!

● The protocol is public!

Debate Systems
(Alternation)

PROVER

∃
REFUTER

∀

VERIFIER

communication cell
x∈L x∉L

We say that language L has a debate chakable by a machine V

with error bound ϵ∈[0,
1
2
) if

 - for each w∈L , the prover is able to make the verifier accept
w with probability at least 1−ϵ , no matter what the refuter says
in return,
 - for each w∉L , the refuter is able to make the verifier reject
w with probability at least 1−ϵ , no matter what the prover says
in return.

A language is said to be debatable if it has a debate checkable by
some verifiers.

Note that the class of debatable languages are closed under
complementation.

DebateArthurMerlin(2PFA)
is a subset of NP.

What about
DebateArthurMerlin(2QCFA)?

A very short review of quantum computation.

A quantum state of n-dimensional quantum register
is a norm-1 vector over real (complex) numbers.

Two fundamental quantum operators:
1. Unitary operators preserving the length:

()
, where .

2. Measurements:

If outcome is observed, then system collapses to

Consider the following operations defined on
rational numbers:

v f=A⋅A⋅B⋅B⋅A⋅A⋅A⋅A⋅B⋅B⋅A⋅A⋅v0

A quantum register simulates this computation and
obtain a normalized version of the final vector with
a very small probability!

The debate for a decidable language L

Let T be the Turing machine deciding L and w be the
given input.
●The verifier requests the computation history of T on
w from the verifier and refuter: C1$C2$C3$...$CN.
●The verifier check the correctness of the history:

● Deterministically check the initial one!
● Deterministically check the format of each

configuration.
● Quantumly check whether Ci is a valid successor

of C(i-1).
● Give a parallel decision to the configuration history.

Decision without error
In the above protocol, the verifier knows that one of the
player is lying after a conflict.

If the verifier detects this error immediately, then the verifier
does need to the rest of the configuration.

The verifier can only focus on the error but the cheating
player may send infinitely long configuration, and so, the
verifier could not make a check.

But, the verifier can make such check if the length of the
configurations are linear by using the input head.

So, this simulation works for linear space Turing machines
(linear-space alternating TMs): ASPACE (n)=TIME (2n)

Multi-head 2QCFAs as verifiers

The last simulation also works for log-space if the
automaton has multi-head:

∪k ASPACE (nk)=APSPACE=EXPTIME

THANK YOU!

QUESTIONS?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

