
  

Debates with small transparent 
quantum verifiers

Abuzer Yakaryılmaz
National Laboratory for Scientific Computing, Brazil

A. C. Cem Say
Bogazici University, Turkey

H. Gokalp Demirci
University of Chicago, USA 

DLT 2014 (Ekaterinburg)
August 26, 2014



  

A short review of nondeterministic 
and alternating machines



  

Alternating finite automata

●There are four types of states:
● Existential states
● Universal states
● Accepting states
● Rejecting states

● The given input is written on a tape between two 
end-markers.

● The head is on the left end-marker and the state is 
the initial one at the beginning of the computation.

● The computation can split more than one branch. 
● (s,σ)→Powerset(s',d), where d⋲{←,↓,→}.

● The input is accepted (rejected) if the automaton 
enters an accepting (a rejecting) states



  

Initial configuration

halting configurations
accepting or rejecting?

Computation tree for 
nondeterministic machines



  

Computation tree for alternating 
machines 

Initial configuration

halting configurations
accepting or rejecting?

not only OR ( ) operator
but also AND ( ) operator

Additional property:

An AND node takes 
the value of ‘TRUE’ 
if all of its children 
have the value of 

‘TRUE’



  

The computation in each path 
is deterministic!

How can we define 
bounded-error 

nondeterminism or alternation?



  

nondeterministic machine
≡

deterministic verification

Similarly, we can define probabilistic 
verification or quantum verification!



  

a proof system (a two person game)

For a given language L,
the deterministic machine (we call it verifier) can 

interact with a prover (access a proof) to determine 
the membership of a given input string.

●For the members, the verifier accepts the input. 
(There exists a valid proof for a true statement!)

●For the non-members, none of the provers 
convince the verifier and so the verifier rejects input.
(There exists no proof for a false statements!)



  

Probabilistic verification:

The verifier is a probabilistic machine! 
● Depending on different branches, different 

interactions can happen with the prover.
● The verifier can hide its probabilistic choices: 

Private-coin interactive proof system
● Otherwise, it is called:

Public-coin interactive proof systems
or, Arthur-Merlin games



  

NP is the class of languages whose 
memberships are verified in polynomial time 

deterministically.

Polynomial time probabilistic (quantum) 
verification defines the class PSPACE.



  

Space-bounded verification:

There is no restriction on time but on space.

The “simplest” case: The verifier is a finite 
state automaton. 

2PFA (two-way probabilistic finite automaton):
● It can recognize the following language with 

bounded-error.

{an1bn1an2bn2⋯ankbnk∣k≥0 }



  

Any Turing recognizable language can be recognized 
by a two-way deterministic finite automaton with two 
counters (2D2CA).

A proof system having a 2PFA as verifier can 
simulate the computation of a 2D2CA on a given 
input string:

● The prover sends the contents of the counters to 
the verifier and the 2PFA can execute a similar 
algorithm.

● The drawback: For the non-members, the 
computation might not be halted. Such proof 
systems are called “weak”.



  

Public-coin proof systems are not powerful as 
private-coin ones!

ArthurMerlin(2PFA) does not contain the 
language of palindromes and it is a proper 

subset of P even in weak case!



  

Two-way finite automaton having a constant 
size quantum register (2QCFA):

They can recognize the following language:
● The members are accepted exactly!

{w1 cw1cw2w2 c⋯cwk cw k∣wi∈{a ,b }* , k≥0 }



  

Arthur Merlin proof system having 
2QCFAs as verifiers:

●The prover can send the configurations of a 
Turing machine on a given input!

● The members are accepted exactly!

● The protocol is public!



  

Debate Systems
(Alternation)



  

PROVER

∃
REFUTER

∀

VERIFIER

communication cell
x∈L x∉L



  

We say that language L  has a debate chakable by a machine V

with error bound ϵ∈[0,
1
2
)  if

 - for each w∈L ,  the prover is able to make the verifier accept
w  with probability at least 1−ϵ ,  no matter what the refuter says
in return,
 - for each w∉L ,  the refuter is able to make the verifier reject
w  with probability at least 1−ϵ ,  no matter what the prover says
in return.

A language is said to be debatable if it has a debate checkable by
some verifiers.

Note that the class of debatable languages are closed under
complementation.



  

DebateArthurMerlin(2PFA)
is a subset of NP.

What about 
DebateArthurMerlin(2QCFA)?



  

A very short review of quantum computation.



  

A quantum state of n-dimensional quantum register 
is a norm-1 vector over real (complex) numbers.



  

Two fundamental quantum operators:
1. Unitary operators preserving the length:

( )
, where .

2. Measurements: 

If outcome is observed, then system collapses to



  

Consider the following operations defined on 
rational numbers:

v f=A⋅A⋅B⋅B⋅A⋅A⋅A⋅A⋅B⋅B⋅A⋅A⋅v0

A quantum register simulates this computation and 
obtain a normalized version of the final vector with
a very small probability!



  

The debate for a decidable language L

Let T be the Turing machine deciding L and w be the 
given input.
●The verifier requests the computation history of T on 
w from the verifier and refuter: C1$C2$C3$...$CN.
●The verifier check the correctness of the history:

● Deterministically check the initial one!
● Deterministically check the format of each 

configuration.
● Quantumly check whether Ci is a valid successor 

of C(i-1).
● Give a parallel decision to the configuration history.



  

Decision without error
In the above protocol, the verifier knows that one of the 
player is lying after a conflict. 

If the verifier detects this error immediately, then the verifier 
does need to the rest of the configuration.

The verifier can only focus on the error but the cheating 
player may send infinitely long configuration, and so, the 
verifier could not make a check.

But, the verifier can make such check if the length of the 
configurations are linear by using the input head.

So, this simulation works for linear space Turing machines 
(linear-space alternating TMs): ASPACE (n)=TIME (2n)



  

Multi-head 2QCFAs as verifiers

The last simulation also works for log-space if the 
automaton has multi-head:

∪k ASPACE (nk)=APSPACE=EXPTIME



  

THANK YOU!

QUESTIONS?
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