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Introduction

Deletion

@ Deletion is one of the basic operations in formal language theory.

@ The deletion of a string v from a string u consists of erasing a

contiguous substring v from .

Example (Deletion mutation in genes)

Normal chromosome

Glslefelrlc|u]D)

C|E|F|G

AT

1D

After deletion mutation
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Introduction

Deletion along Trajectories

Let & = aabbce, y = abc and t = (id). Then, we have that
x ~ y = abe. If t =43d3, then z ~», y = 0.
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Introduction

Deletion along Trajectories

Let & = aabbce, y = abc and t = (id). Then, we have that
x ~ y = abe. If t =43d3, then z ~», y = 0.

r =a abbdbcc
t =4 dv did
y = a b c
T~y = a b c
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Introduction

Deletion along Trajectories

Let & = aabbce, y = abc and t = (id). Then, we have that
x ~ y = abe. If t =43d3, then z ~», y = 0.

r =a abdb cc

t =1 1 1 d dd

y = a b c
T~y =
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Introduction

Deletion along Trajectories

Definition
Let T C {i,d}*. Then,

way:Ua:wty.
teT
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Introduction

Deletion along Trajectories

Definition
Let T C {i,d}*. Then,

way:Ua:wty.
teT

We can extend to the languages!

Definition
Let L1, Ly C X* and T C {i,d}*. Then

Li~rLy= | z~ry
z€L1,yEL2
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Introduction

Deletion and Left/Right Quotient

@ Deletion is the simplest and most natural generalization of the
left/right quotient.

o Left quotient is deletion along a set of trajectories d*i*.
(L2 \ Ly = Ly ~ g+ La)

@ Right quotient is deletion along a set of trajectories i*d*.
(Ll/LZ — L'l MR dA L_’)

@ Here we consider the deletion along a set of trajectories i*d*i*.
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Introduction

State Complexity

The state complexity of L, sc(L), is the size of the minimal complete
DFA recognizing L.

Definition

| A

The incomplete state complexity of L, isc(L), is the size of the
minimal incomplete DFA recognizing L.

For each regular language L either

sc(L) =isc(L) +1

sc(L) = isc(L).
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Introduction

State Complexity of Left/Right Quotient

Known results (S. Yu, 1997)

It is known that for L, recognized by a DFA with n states and an
arbitrary language Lo, the worst case state complexity of

o the left-quotient Ly \ Ly is 2" — 1 and
o the state complexity of the right-quotient L;/Ls is n.
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Introduction

State Complexity of Left/Right Quotient

Known results (S. Yu, 1997)

It is known that for L, recognized by a DFA with n states and an
arbitrary language Lo, the worst case state complexity of

o the left-quotient Ly \ Ly is 2" — 1 and
o the state complexity of the right-quotient L;/Ls is n.

Problem

What is the precise state complexity of deletion (along a set of
trajectories ¢*d*i*)?
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Introduction

Deletion Preserves Regularity

Theorem (L. Kari, 1994)

It is well known that Ly ~~ Lo is always regular for a regular language L
and an arbitrary language L.

Yo-Sub Han, Sang-Ki Ko, Kai Salomaa State Complexity of Deletion



Introduction

Deletion Preserves Regularity

Theorem (L. Kari, 1994)

It is well known that Ly ~~ Lo is always regular for a regular language L
and an arbitrary language L.

Corollary (L. Kari, 1994)

The language Ly ~ Lo can be effectively constructed if Ly is a regular
language and Lo is a regular or context-free language.

The proof of the theorem vyields an upper bound 22" which works for an
arbitrary language Lo and is not effective.
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Upper Bound For Complete DFAs
For Incomplete DFAs

Upper Bound for Complete DFAs

Consider Ly, Ly C ¥* where L, is recognized by a complete DFA with n
states. Then
sc(Ly ~» L) <n-2"7 1
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Upper Bound For Complete DFAs
For Incomplete DFAs

Proof for Upper Bound

Complete DFAs

Let A= (Q,%,d,qo, Fa) be a complete DFA for Ly where |Q| = n.
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Upper Bound For Complete DFAs
For Incomplete DFAs

Proof for Upper Bound

Complete DFAs

Proof.
Let A= (Q,%,d,qo, Fa) be a complete DFA for Ly where |Q| = n.
To recognize the language L; ~» Ly we define a DFA

B = (P7Z77)pOaFB)7

where

e P={(r,R)|r€@Q,RCQ,ir,Lz) CR},
(|IP|=n-2m)
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Upper Bound For Complete DFAs
For Incomplete DFAs

Proof for Upper Bound

Complete DFAs

Let A= (Q,%,d,qo, Fa) be a complete DFA for Ly where |Q| = n.

To recognize the language L; ~» Ly we define a DFA
B = (P7Z77)pOaFB)7

where

e P={(r,R)|r€@Q,RCQ,ir,Lz) CR},
(|IP|=n-2m)

® po = (qo,9(qo, L2)) and
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Upper Bound For Complete DFAs
For Incomplete DFAs

Proof for Upper Bound

Complete DFAs

Proof.
Let A= (Q,%,d,qo, Fa) be a complete DFA for Ly where |Q| = n.

To recognize the language L; ~» Ly we define a DFA
B = (P7Z77)pOaFB)7

where
o P={(r,R)|r€Q,RCQ,(r,Lz) CR},
(|IP|=n-2m)
® po = (qo,9(qo, L2)) and
o Fp={(r,R)|r€Q,RCQ,i(r,Lz) CRand RNF4 # 0}.
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Upper Bound For Complete DFAs
For Incomplete DFAs

Proof for Upper Bound

Complete DFAs

It remains to define the transitions of v. For (r, R) € P and b € ¥ we set

v((r, R), ) = (6(r,b), Ué(é(r, b), La)).

u€ Lo

abac ababacca bac
T

welLy
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Upper Bound For Complete DFAs
For Incomplete DFAs

Proof for Upper Bound

Complete DFAs
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For Incomplete DFAs

Proof for Upper Bound
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Upper Bound For Complete DFAs
For Incomplete DFAs

Proof for Upper Bound

Complete DFAs

It remains to define the transitions of v. For (r, R) € P and b € ¥ we set

v((r, R), ) = (6(r,b), Ué(é(r, b), La)).

@ Since Ly # (), for each r € Q, we have |(r, Lo)| > 1.
@ So, there exist at most 2"~ ! sets R such that (r, R) is a state of B.

@ As a result, we have an upper bound n - 2771

O
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Upper Bound For Complete DFAs
For Incomplete DFAs

Upper Bound for Incomplete DFAs

Let Ly, Ly C ¥* where Ly is recognized by an incomplete DFA A with n
states. Then

isc(Ly ~ Ly) < (n41)-2" — (2" +2).
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Upper Bound For Complete DFAs
For Incomplete DFAs

Proof for Upper Bound

Incomplete DFAs

Let A= (Q,%,9,qo, Fa) be an incomplete DFA for L,

Ql=n.
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Upper Bound For Complete DFAs
For Incomplete DFAs

Proof for Upper Bound

Incomplete DFAs

Let A= (Q,%,9,qo, Fa) be an incomplete DFA for Ly, |Q| = n.

We define the completion of § as a function
8 (QU {dead}) x ¥ — QU {dead}
by setting for r € Q U {dead} and b € ¥,

/ [ 8(r,b), ifr €@ andd(r,b) is defined;
o'(r,b) = { dead,  otherwise.
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Upper Bound For Complete DFAs
For Incomplete DFAs

Proof for Upper Bound

Incomplete DFAs

Define a DFA
B = (Pvza’y’pOaFB)a
where

o P = (QU{dead}) x 2¢ — {(dead, 1), (dead, Q)},
(1P| = (n+1)-2" —2)
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Upper Bound For Complete DFAs
For Incomplete DFAs

Proof for Upper Bound

Incomplete DFAs

Define a DFA
B = (Pvza’y’p()aFB)a
where
o P = (QU{dead}) x 2¢ — {(dead, 1), (dead, Q)},
(|P|=(n+1) 27 —2)
® po = (qo,6(qo, L2)) and
(same as complete case)
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Upper Bound For Complete DFAs
For Incomplete DFAs

Proof for Upper Bound

Incomplete DFAs

Define a DFA
B = (Pvza’YaPOaFB)a
where
o P = (QU{dead}) x 2¢ — {(dead, 1), (dead, Q)},
(|P|=(n+1) 27 —2)
® po = (qo,6(qo, L2)) and
(same as complete case)

e Fg={(r,R) |7 € QU{dead}, R C Q and RN Fx # (}.
(same as complete case except {dead})
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Upper Bound For Complete DFAs
For Incomplete DFAs

Proof for Upper Bound

Incomplete DFAs

The transitions of  are defined by setting, for (r, R) € P and b € X, we
define v((r, R),b) to be

e (&'(r,b), 6(R,b)U((r,b),Ls)), ifre@ and (§'(r,b) # dead
or 0(R,b) Ud(6(r,b), La) # 0);
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Upper Bound For Complete DFAs
For Incomplete DFAs

Proof for Upper Bound

Incomplete DFAs

The transitions of  are defined by setting, for (r, R) € P and b € X, we
define v((r, R),b) to be

e (&'(r,b), 6(R,b)U((r,b),Ls)), ifre@ and (§'(r,b) # dead
or 0(R,b) Ud(6(r,b), La) # 0);

o (dead,d(R,b)), if r = dead and 6(R,b) # 0;
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Upper Bound For Complete DFAs
For Incomplete DFAs

Proof for Upper Bound

Incomplete DFAs

The transitions of  are defined by setting, for (r, R) € P and b € X, we
define v((r, R),b) to be

e (&'(r,b), 6(R,b)U((r,b),Ls)), ifre@ and (§'(r,b) # dead
or 0(R,b) Ud(6(r,b), La) # 0);

o (dead,d(R,b)), if r = dead and 6(R,b) # 0;

@ undefined, otherwise.
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Upper Bound For Complete DFAs
For Incomplete DFAs

Proof for Upper Bound

Incomplete DFAs

The transitions of  are defined by setting, for (r, R) € P and b € X, we
define v((r, R),b) to be

e (&'(r,b), 6(R,b)U((r,b),Ls)), ifre@ and (§'(r,b) # dead
or 0(R,b) Ud(6(r,b), La) # 0);

o (dead,d(R,b)), if r = dead and 6(R,b) # 0;

@ undefined, otherwise.

We have 2"~ ! unreachable states since for some ¢; € Q and w; € Lo,
0(q1,w1) must be defined. O
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Upper Bound For Complete DFAs
For Incomplete DFAs

Necessary Condition for Upper Bound

Let A= (Q,%,0,q0, F) be an incomplete DFA with n states, L1 = L(A)
and Lo is an arbitrary language. Then a necessary condition for
isc(Ly ~ Lo) to reach the upper bound (n + 1) - 2" — (2"~ 4 2) is that

(3g € Q) [16(q,L2)| =1 and (Vp € Q,p # q) 6(p, L2) =0 .

The conditions of the above corollary do not force Ly to be a singleton
set, however, we can achieve simper lower bound proof using a singleton
set as Ls.
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For Complete DFAs
Lower Bound For Incomplete DFAs

Lower Bound for Complete DFAs

Let ¥ = {a,b,c,d,e}. For every n > 3 there exists a complete DFA A
over Y with n states such that

sc(L(A) ~ {c}) =n 2",

Proof.
A complete DFA A

C C
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For Complete DFAs
Lower Bound For Incomplete DFAs

Tightness of the Upper Bound

Theorem
For languages Ly, Ly C X* where Ly is regular,
sc(Ly ~ Lo) < sc(Ly) . gse(L1)—1

For every n > 3 there exists a regular language L, over a five-letter
alphabet with sc(Ly) = n and a singleton language Lo such that in the
above inequality we have equality.
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For Complete DFAs
Lower Bound For Incomplete DFAs

Lower Bound for Incomplete DFAs

Lemma

Let ¥ ={a,b,c,d,e}. Forevery n > 4 there exists a regular language
L1 C X* recognized by an incomplete DFA with n states such that

isc(Ly ~ {c}) = (n+1)-2" — (2" 1 4+ 2).

Proof.
An incomplete DFA A

b, e d d d d,e

(a3 (2 Cy (3
Ae\—y

a,b,c
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For Complete DFAs
Lower Bound For Incomplete DFAs

Tightness of the Upper Bound

Theorem
For languages L1, Ly C ¥* where Ly is regular,
iSC(L]_ PN L2) S (iSC(Ll) + 1) N 2iSC(L1) _ (2iSC(L1)_1 + 2).

For every n > 4 there exists a language L, over a five-letter alphabet
recognized by an incomplete DFA with n states and a singleton language
L such that in the above inequality we have an equality.
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Conclusions

Conclusions

@ We have established tight state complexity bounds for the deletion
operation.

@ Both in the case where the languages are represented by

o complete DFAs and
o incomplete DFAs.

@ The state complexity bounds are

o n-2n 1 For complete DFAs
o (n+1)-2" — (2" +2) For incomplete DFAs

@ For the lower bound, we used a five-letter alphabet.
Can be reduced!
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Conclusions

Future Works

Bipolar deletion

The set of trajectories d*i*d* defines the bipolar deletion operation.
Then, the language Li ~+4+;+q~ Lo consists of the strings v such that for
some string u = ujus € Lo, the string ujvus € L.

@ It is known that bipolar deletion preserves regularity but the current

state complexity bound is not optimal.
23mn ypper bound (M. Domaratzki, 2004)

@ Tight bound for the state complexity of bipolar deletion?
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