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.. Deletion

Deletion is one of the basic operations in formal language theory.

The deletion of a string v from a string u consists of erasing a
contiguous substring v from u.

.
Example (Deletion mutation in genes)
..

......

A B C E F G H I

A B
C E F G

H I

A B H I
Deletion

Normal chromosome

After deletion mutation
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.. Deletion along Trajectories

.
Example
..

......

Let x = aabbcc, y = abc and t = (id)3. Then, we have that
x⇝t y = abc. If t = i3d3, then x⇝t y = ∅.

x = a a b b c c

t = i d i d i d
y = a b c

x⇝t y =
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.. Deletion along Trajectories

.
Definition
..

......

Let T ⊆ {i, d}∗. Then,

x⇝T y =
∪
t∈T

x⇝t y.

We can extend to the languages!

.
Definition
..

......

Let L1, L2 ⊆ Σ∗ and T ⊆ {i, d}∗. Then

L1 ⇝T L2 =
∪

x∈L1,y∈L2

x⇝T y.
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.. Deletion and Left/Right Quotient

Deletion is the simplest and most natural generalization of the
left/right quotient.

Left quotient is deletion along a set of trajectories d∗i∗.
(L2 \ L1 = L1 ⇝d∗i∗ L2)

Right quotient is deletion along a set of trajectories i∗d∗.
(L1/L2 = L1 ⇝i∗d∗ L2)

Here we consider the deletion along a set of trajectories i∗d∗i∗.
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.. State Complexity

.
Definition
..

......

The state complexity of L, sc(L), is the size of the minimal complete
DFA recognizing L.

.
Definition
..

......

The incomplete state complexity of L, isc(L), is the size of the
minimal incomplete DFA recognizing L.

For each regular language L either

sc(L) = isc(L) + 1

or
sc(L) = isc(L).
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.. State Complexity of Left/Right Quotient

.
Known results (S. Yu, 1997)
..

......

It is known that for L1 recognized by a DFA with n states and an
arbitrary language L2, the worst case state complexity of

the left-quotient L2 \ L1 is 2n − 1 and

the state complexity of the right-quotient L1/L2 is n.

.
Problem
..

......

What is the precise state complexity of deletion (along a set of
trajectories i∗d∗i∗)?

Yo-Sub Han, Sang-Ki Ko, Kai Salomaa State Complexity of Deletion



. . . . . .

Introduction
Upper Bound
Lower Bound
Conclusions

.. State Complexity of Left/Right Quotient

.
Known results (S. Yu, 1997)
..

......

It is known that for L1 recognized by a DFA with n states and an
arbitrary language L2, the worst case state complexity of

the left-quotient L2 \ L1 is 2n − 1 and

the state complexity of the right-quotient L1/L2 is n.

.
Problem
..

......

What is the precise state complexity of deletion (along a set of
trajectories i∗d∗i∗)?

Yo-Sub Han, Sang-Ki Ko, Kai Salomaa State Complexity of Deletion



. . . . . .

Introduction
Upper Bound
Lower Bound
Conclusions

.. Deletion Preserves Regularity

.
Theorem (L. Kari, 1994)
..

......

It is well known that L1 ⇝ L2 is always regular for a regular language L1

and an arbitrary language L2.

.
Corollary (L. Kari, 1994)
..

......

The language L1 ⇝ L2 can be effectively constructed if L1 is a regular
language and L2 is a regular or context-free language.

.
Note
..

......

The proof of the theorem yields an upper bound 22n which works for an
arbitrary language L2 and is not effective.
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For Complete DFAs
For Incomplete DFAs

.. Upper Bound for Complete DFAs

.
Lemma
..

......

Consider L1, L2 ⊆ Σ∗ where L1 is recognized by a complete DFA with n
states. Then

sc(L1 ⇝ L2) ≤ n · 2n−1.
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For Complete DFAs
For Incomplete DFAs

..
Proof for Upper Bound
Complete DFAs

.
Proof.
..

......

Let A = (Q,Σ, δ, q0, FA) be a complete DFA for L1 where |Q| = n.

To recognize the language L1 ⇝ L2 we define a DFA

B = (P,Σ, γ, p0, FB),

where

P = {(r,R) | r ∈ Q,R ⊆ Q, δ(r,L2) ⊆ R},
(|P | = n · 2n)

p0 = (q0, δ(q0,L2)) and

FB = {(r,R) | r ∈ Q,R ⊆ Q, δ(r,L2) ⊆ R and R ∩ FA ̸= ∅}.
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For Complete DFAs
For Incomplete DFAs

..
Proof for Upper Bound
Complete DFAs

.
Proof.
..

......

It remains to define the transitions of γ. For (r,R) ∈ P and b ∈ Σ we set

γ((r,R), b) = (δ(r, b), δ(R, b) ∪ δ(δ(r,b),L2)).

abac

u∈L2︷ ︸︸ ︷
ababacca bac︸ ︷︷ ︸

w∈L1
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For Complete DFAs
For Incomplete DFAs

..
Proof for Upper Bound
Complete DFAs

.
Proof.
..

......

It remains to define the transitions of γ. For (r,R) ∈ P and b ∈ Σ we set

γ((r,R), b) = (δ(r, b), δ(R, b) ∪ δ(δ(r,b),L2)).

Since L2 ̸= ∅, for each r ∈ Q, we have |δ(r, L2)| ≥ 1.

So, there exist at most 2n−1 sets R such that (r,R) is a state of B.

As a result, we have an upper bound n · 2n−1.
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For Complete DFAs
For Incomplete DFAs

.. Upper Bound for Incomplete DFAs

.
Lemma
..

......

Let L1, L2 ⊆ Σ∗ where L1 is recognized by an incomplete DFA A with n
states. Then

isc(L1 ⇝ L2) ≤ (n+ 1) · 2n − (2n−1 + 2).
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For Complete DFAs
For Incomplete DFAs

..
Proof for Upper Bound
Incomplete DFAs

.
Proof.
..

......

Let A = (Q,Σ, δ, q0, FA) be an incomplete DFA for L1, |Q| = n.

We define the completion of δ as a function

δ′ : (Q ∪ {dead})× Σ → Q ∪ {dead}

by setting for r ∈ Q ∪ {dead} and b ∈ Σ,

δ′(r, b) =

{
δ(r, b), if r ∈ Q and δ(r, b) is defined;
dead, otherwise.
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For Complete DFAs
For Incomplete DFAs

..
Proof for Upper Bound
Incomplete DFAs

.
Proof.
..

......

Define a DFA
B = (P,Σ, γ, p0, FB),

where

P = (Q ∪ {dead})× 2Q − {(dead, ∅), (dead, Q)},
(|P | = (n+ 1) · 2n − 2)

p0 = (q0, δ(q0, L2)) and
(same as complete case)

FB = {(r,R) | r ∈ Q ∪ {dead}, R ⊆ Q and R ∩ FA ̸= ∅}.
(same as complete case except {dead})
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For Complete DFAs
For Incomplete DFAs

..
Proof for Upper Bound
Incomplete DFAs

.
Proof.
..

......

The transitions of γ are defined by setting, for (r,R) ∈ P and b ∈ Σ, we
define γ((r,R), b) to be

(δ′(r, b), δ(R, b) ∪ δ(δ(r, b), L2)), if r ∈ Q and (δ′(r, b) ̸= dead
or δ(R, b) ∪ δ(δ(r, b), L2) ̸= ∅);

(dead, δ(R, b)), if r = dead and δ(R, b) ̸= ∅;

undefined, otherwise.

We have 2n−1 unreachable states since for some q1 ∈ Q and w1 ∈ L2,
δ(q1, w1) must be defined.
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For Complete DFAs
For Incomplete DFAs

.. Necessary Condition for Upper Bound

.
Corollary
..

......

Let A = (Q,Σ, δ, q0, F ) be an incomplete DFA with n states, L1 = L(A)
and L2 is an arbitrary language. Then a necessary condition for
isc(L1 ⇝ L2) to reach the upper bound (n+ 1) · 2n − (2n−1 + 2) is that

(∃q ∈ Q) [ |δ(q, L2)| = 1 and (∀p ∈ Q, p ̸= q) δ(p, L2) = ∅ ].

.
Note
..

......

The conditions of the above corollary do not force L2 to be a singleton
set, however, we can achieve simper lower bound proof using a singleton
set as L2.
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For Complete DFAs
For Incomplete DFAs

.. Lower Bound for Complete DFAs

.
Lemma
..

......

Let Σ = {a, b, c, d, e}. For every n ≥ 3 there exists a complete DFA A
over Σ with n states such that

sc(L(A)⇝ {c}) = n · 2n−1.

.
Proof.
..

......

A complete DFA A

0 1 2 n−2 n−1

c ccc, d, eb, d

a, c, e a, b a, b, d, e a, b, d, e a, b, d, e

a, b, d, e
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For Complete DFAs
For Incomplete DFAs

.. Tightness of the Upper Bound

.
Theorem
..

......

For languages L1, L2 ⊆ Σ∗ where L1 is regular,

sc(L1 ⇝ L2) ≤ sc(L1) · 2sc(L1)−1.

For every n ≥ 3 there exists a regular language L1 over a five-letter
alphabet with sc(L1) = n and a singleton language L2 such that in the
above inequality we have equality.

Yo-Sub Han, Sang-Ki Ko, Kai Salomaa State Complexity of Deletion



. . . . . .

Introduction
Upper Bound
Lower Bound
Conclusions

For Complete DFAs
For Incomplete DFAs

.. Lower Bound for Incomplete DFAs

.
Lemma
..

......

Let Σ = {a, b, c, d, e}. For every n ≥ 4 there exists a regular language
L1 ⊆ Σ∗ recognized by an incomplete DFA with n states such that

isc(L1 ⇝ {c}) = (n+ 1) · 2n − (2n−1 + 2).

.
Proof.
..

......

An incomplete DFA A

1 2 3 n−1 0

d d, eddb, e

a
a, b a, b

a, b, c

a, b a, b

e

Yo-Sub Han, Sang-Ki Ko, Kai Salomaa State Complexity of Deletion



. . . . . .

Introduction
Upper Bound
Lower Bound
Conclusions

For Complete DFAs
For Incomplete DFAs

.. Tightness of the Upper Bound

.
Theorem
..

......

For languages L1, L2 ⊆ Σ∗ where L1 is regular,

isc(L1 ⇝ L2) ≤ (isc(L1) + 1) · 2isc(L1) − (2isc(L1)−1 + 2).

For every n ≥ 4 there exists a language L1 over a five-letter alphabet
recognized by an incomplete DFA with n states and a singleton language
L2 such that in the above inequality we have an equality.
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.. Conclusions

.
Results
..

......

We have established tight state complexity bounds for the deletion
operation.

Both in the case where the languages are represented by

complete DFAs and
incomplete DFAs.

The state complexity bounds are

n · 2n−1 For complete DFAs
(n+ 1) · 2n − (2n−1 + 2) For incomplete DFAs

For the lower bound, we used a five-letter alphabet.
Can be reduced!
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.. Future Works

.
Bipolar deletion
..

......

The set of trajectories d∗i∗d∗ defines the bipolar deletion operation.
Then, the language L1 ⇝d∗i∗d∗ L2 consists of the strings v such that for
some string u = u1u2 ∈ L2, the string u1vu2 ∈ L1.

It is known that bipolar deletion preserves regularity but the current
state complexity bound is not optimal.

23mn upper bound (M. Domaratzki, 2004)

Tight bound for the state complexity of bipolar deletion?
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