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Realtime deterministic finite

automata (rtDFA) defines the class
of REGULAR LANGUAGES!

And, even two-way alternation does
not change the class!



A fundamental question is

What is the minimum amount of
resource to add a riDFA to
recognize a nhon-reqular language?

What is the minimum amount of time?

What is the minimum amount of space?




Three parameters:
Computation modes: deterministic,
nondeterministic, alternating, probabilistic, and
quantum.
Tape heads: realtime, one-way, and two-way.
Memory types: counters, stack, and tapes.

and

Unary versus general alphabet languages



Three ways of defining space

A language Is said to be recognized by a machine
in X-type s(|w|) space:

1) Strong space: The space used by the machine on
each input w is at most s(|w|).

2) Middle space: The space used by the machine on
each member w is at most s(|w|).

3) Weak space: The minimum amount of space used
by the machine in a single accepting path (tree) for
each member w is at most s(|w|).



Two-way Turing machines

We have a complete picture:

Any language recognized by a ATM in weak
o(loglogn) space is regular.

There is a unary non-regular language recognizes
by a DTM in weak O(loglogn) space.



One-way and realtime Turing
machines

Table 1. Minimum space used by one-way TMs for recognizing nonregular languages.

General input alphabet | Unary input alphabet

Strong|Middle |Weak |Strong/Middle/Weak
Deterministic TM logn |logn |logn |logn |logn |logn
Nondeterministic TM|logn |[logn |loglogn|logn |logn |loglogn
Alternating TM logn |loglogn|loglognjlogn |logn |loglogn

Open Problem 1 [26] Are the double logarithmic lower bounds for the recog-
nition of the nonreqular unary languages by real-time nondeterministic and al-

ternating TMs tight?



Pushdown automata

* No weak o(n)-space bounded one-way deterministic

PDAs can recognize any non-regular language!

» Realtime deterministic PDAs can recognize the

language having equal number of a's and b's.

* For one-way nondeterministic PDAs, a weak

logarithmic space algorithm was given for a non-

regular language.

* \We improve this bound to /oglog(n) space also for

realtime head.



REI composed by the non-prefixes of the following infinite word
bepacitbeia - - - bey t’lt’:?’_}_lbﬂk +1 r1r:§“+gb e
where

— ¢ = ebydby 1 t’ﬂ)ﬁfﬁbgt’ﬂ)k52t’ﬂ)zﬂﬁbgfﬂjk:gfﬂjgﬁ*"Ejf,lkzuﬂgk} db”(}gmdbﬁ”ggm e 1S a
counter representation for £ augmented with subcounters,

— b; € {0,1}* is the binary representation of ¢, and

— by; € {0,1} is the i-th last bit (value 2°) in the binary representation of k.

Each b; is associated with by, ;. The length of by, 04k is O(loglog(k)).

Theorem 1. Realtime nondeterministic PDAs can recognize nonregular lan-
guage REI with weak loglogn space.

This bound is also tight for one-way /realtime alternating PDAs since o(loglog n)
weak-space alternating TMs cannot recognize any nonregular language [20].

Open Problem 2 What are the tight strong/middle space bounds for one-way/realtime
nondeterministic and alternating PDAs for the recognition of nonregular lan-
quages?



Unary languages and PDAs

It is a well-known fact that one-way nondeterministic
PDA cannot recognize any nonregular language.

One-way alternating PDAs are quite powerful and
they can recognize any language in linear
alternating space (space inefficient).

What about alternating counter-automaton (CA)?



UPOWER = {a2" | n > 0} and UPOWER+ = {a2" 2" | n > 0}

Theorem 2. Realtime alternating CAs can recognize nonregular UPOWER+ in
weak logarithmic space.

Open Problem 3 What are the tight space bounds for realtime/one-way alter-
nating CAs for the recognition of nonregular unary and binary languages?

A trade-off to alternation depth:
Our alternating algorithm has a linear alternation depth (for the members).

We also present a realtime algorithm for UPOWER with logarithmic
alternation depth but it uses a linear counter.



br,j | bk,j—1
br—1,5|bk—1,j—1

bkjj can be determined by bk,j—l; bk—l,j; and bk—l,j—l-
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br.1 can be determined by bg_1 ;.

Let a™ be the input. The head position and the value of the counter represent
a binary number (b, j):

— the head is on (m — k)th symbol and
— the value of the counter is j.

The automaton nondeterministically picks a value of £ at the beginning and
then universally enters:

(bm.1,1), (bma,0)y .oy (bimk, 0).

The automaton represents 2 at this point. By reading the input, the automaton
decrements the counter. If it hits zero, then 2% = m.



Two-way PDAs

In the case of two-way PDAs, we have tight bounds since a two-way deter-
ministic PDAs can recognize REI with strong log log n-space.

Theorem 3. Two-way deterministic PDAs can recognize REI in strong loglog n-
space.

Unary languages:

Any unary language recognized by a two-way deterministic PDA using
sublinear space on its stack is regular.

Two-way deterministic CAs can recognize nonregular unary language
UPOWER in linear space.

Therefore, linear space is a tight bound for both two-way deterministic
PDAs and CAs.

Currently, we do not know whether nondeterminism or using random
choices can help for unary languages.



Multi counter/pushdown automata

Another interesting direction is to identify the tight
space bounds for one-way/realtime multi-
counter/pushdown automata.

We only know that realtime deterministic automata
with k counters can recognize some non-regular

1
languages in middle o(,*) space, where k>1.



Probabilistic and quantum machines

» Probabilistic models are special cases of their quantum
counterparts.
*Realtime probabilistic finite automata (PFAs) can
recognize unary non-regular languages with unbounded-
error.
Bounded-error:
* One-way PFAs recognize only regular languages.
 Two-way PFAs can recognize some non-regular
languages but only with exponential-expected time.
* Two-way probabilistic TMs can recognize some non-
regular languages in polynomial time with an arbitrary
small space.
* One-way probabilistic TMs cannot recognize any non-
regular language in space o(loglog(n)).



Probabilistic and quantum machines - 2

Bounded-error:
» Realtime quantum finite automata (QFAs) can recognize
only regular languages.
» Two-way QFAs can recognize some non-regular
languages in polynomial expected time.
o If the head is quantum, then one-way QFAs can
recognize some non-regular languages in linear time.



Probabilistic and quantum machines
Unary languages

* Bounded-error:
 Two-way PFAs can recognize only regular
languages.

* The question is open for two-way QFAs.

* \We show that if two-way QFA (with classical
head) has a classical counter, then they can
recognize UPOWER by using logarithmic space
for the members.



Quantum algorithm for UPOWER
*We know that two-way QFAs can recognize POWER

language. POWER={a"b’ |n>0)

Let M be such an machine:
 The members are accepted exactly.
* The non-members are rejected with probability at least 0.8.
* S0, when M rejects, it is certain that the input is not in the
language.
* By using a counter, we can iteratively mark 1,2,3,...,i,...
symbols. |
* In each iteration, we execute M on a'a”.
* If n is not a power of i, then M rejects. So, as long as
getting “reject”, we continue the iteration.
 For members of UPOWER, i never takes the value of n.
* By carefully selecting a small accepting probability, we
obtain our algorithm.



Bounded-error probabilistic
pushdown automata

One-way unary probabilistic PDAs can recognize
only regular languages.
* The question is open for one-way quantum
PDAs.

» Realtime probabilistic PDAs can recognize the
following binary language by using middle
logarithmic space:

{biabyabsabia - - - abyp_1aby: | k> 0}



THANK YOU!

QUESTIONS?
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