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We call tree a...

Directed graph which is
m Rooted: a node is called the root (leftmost in the figures)

m Directed outward from the root: there is a unique path
from the root to every other node.

m Ordered: the children of every node are ordered
(In the figures, lower children are smaller.)
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We call tree a...

Directed graph which is
= Rooted: a node is called the root (leftmost in the figures)

m Directed outward from the root: there is a unique path
from the root to every other node.

m Ordered: the children of every node are ordered
(In the figures, lower children are smaller.)
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Every tree has a canonical breadth-first traversal @
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Two more features

m We consider infinite trees only.
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Two more features

m We consider infinite trees only.

m For convenience, there is loop on the root.
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Signature of a tree

Definition
The signature of a tree is the sequence of the degrees of the
nodes taken in breadth-first order.
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Signature of a tree

Definition
The signature of a tree is the sequence of the degrees of the
nodes taken in breadth-first order.
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Signature of a tree

Definition
The signature of a tree is the sequence of the degrees of the
nodes taken in breadth-first order.

@%‘ 2
"*

111

®74
O—O—_ &
O——@F2

¥

(]

e

s=21



Signature of a tree

Definition
The signature of a tree is the sequence of the degrees of the
nodes taken in breadth-first order.
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Signature of a tree

Definition
The signature of a tree is the sequence of the degrees of the
nodes taken in breadth-first order.

@%& e

,,*

® <<
% . @,,,
@ :Z:

o —»@:Z:

.

O g

s=2122



Signature of a tree

Definition
The signature of a tree is the sequence of the degrees of the
nodes taken in breadth-first order.
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Signature of a tree

Definition
The signature of a tree is the sequence of the degrees of the
nodes taken in breadth-first order.
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Signature of a tree

Definition
The signature of a tree is the sequence of the degrees of the
nodes taken in breadth-first order.
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Signature of a tree

Definition
The signature of a tree is the sequence of the degrees of the
nodes taken in breadth-first order.

NI
009

o
©

|
®

¥

(]

® @
@::
s=21221212



Signature of a tree

Definition
The signature of a tree is the sequence of the degrees of the
nodes taken in breadth-first order.
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Signature of a tree

Definition
The signature of a tree is the sequence of the degrees of the
nodes taken in breadth-first order.
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Signature of a tree

Definition
The signature of a tree is the sequence of the degrees of the
nodes taken in breadth-first order.
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Signature of a tree

Definition
The signature of a tree is the sequence of the degrees of the
nodes taken in breadth-first order.
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Signature of a tree

Definition
The signature of a tree is the sequence of the degrees of the
nodes taken in breadth-first order.
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The signature is characteristic of a tree

s=(32 1)
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The signature is characteristic of a tree
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Prefix-closed languages and labelled trees @

Alphabets are ordered hence
prefix-closed languages = labelled trees.

Figure : Integer representations in the Fibonacci numeration system.
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Prefix-closed languages and labelled trees

Alphabets are ordered hence

prefix-closed languages = labelled trees.
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Figure : Integer representations in the Fibonacci numeration system.
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Serialisation of a prefix-closed language @

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language @

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language @

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.

(]

.®i1/®oa:

/@ 0\®il/ 7:
0 PO~ 0%.13):® -

0 AN ()=
®<0 /@*0”@

-

.<o\_®

¥

o
/
®
n
(]

V &V *ﬁ

&V

>

|l
N
—

=010



Serialisation of a prefix-closed language @

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language @

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language @

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language @

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language @

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language @

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language @

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Definition
The labelling of a language is the sequence of arc labels of its
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Serialisation of a prefix-closed language @

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language @

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.
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Serialisation of a prefix-closed language @

Definition
The labelling of a language is the sequence of arc labels of its
transitions taken in breadth-first order.

s=2122121221221---
A=010010100100101001010 ---



The pair signature/labelling is characteristic
— (32 1)
A= (01212 1)~
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The pair signature/labelling is characteristic

— (32 1)
A= (012 12 1)~
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Figure : Non-canonical integer representations in base 2.
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Theorem

L: a prefix-closed language.
Signature(L) is substitutive < L is accepted by a finite automaton.



A word on substitution

A substitution o is a morphism A* — A*.

Running examples

Fibonacci substitution: {a, b} — {a, b}*
ar ab
b— a
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A word on substitution

A substitution ¢ is a morphism A* — A*.

o is prolongable on a if o(a) starts with the letter a.
In this case, 0“(a) exists and is called a purely substitutive word .

Running examples

Fibonacci substitution: {a, b} — {a, b}*
ar ab
b— a

Periodic substitution: {a, b, c} — {a, b, c}*
a— abc

b— ab

c—c



Substitutive signature

o: a substitution A* — Ax prolongable on a.

f . a letter-to-letter morphism
f(c“(a)) is called a subtitutive word.
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Substitutive signature

o a substitution A* — Ax prolongable on a.

f : a letter-to-letter morphism
f(o0“(a)) is called a subtitutive word.

Definitions
let f, be the (letter-to-letter) morphism: A* — N* defined by
m Vb, f,(b) = |o(b)]

We call f,(0*“(a)) a subtitutive signature.

If g is a morphism such that

m Vb, [g(b)| = |o(b)|

mif g(b)=cpcr---ck thencgp<c <+ <ck
We call g(0“(a)) a substitutive labelling.



Example 1 — the Fibonacci signature

olay=ab = f,(a)=2
o(b)=a = f,(b)=1
f(0¥(a)) = 2122121221221212212122 - -
if we choose g:
g(a) =01
g(b)=0

g(o¥(a)) = 010010100100101001010 ---



Example 1 — the Fibonacci signature

olay=ab = f,(a)=2
o(b) = f,(b)=1
f,(o¥(a)) = 2122121221221212212122---
if we choose g:
g(a) =01
g(b)=0
g(o“(a)) = 010010100100101001010 ---

This pair signature/labelling defines the language of integer
representations in the Fibonacci numeration system.



Example 2 — a periodic signature

o(a) = abc (f,(a) =3)
o(b)=ab (f,(b) =2)
o(c)=c (f(c)=1)
o(abc) = abcabc hence f,(0¥(a)) = (321)¢
If we choose g:
g(a) = 012
g(b) =12
g(c)=1

g(0¥“(a)) = (012121)¢



Example 2 — a periodic signature

o(a) = abc (f,(a) =3)
o(b)=ab (f,(b) =2)
o(c)=c (f(c)=1)

o(abc) = abcabc hence f,(0¥(a)) = (321)¢
If we choose g:
g(a) = 012
g(b) =12
g(c)=1

g(o¥(a)) = (012121)¢

This pair signature/labelling defines a non-canonical representation
of integers in base 2.



Example 3 — the Thue-Morse morphism

o(a)=ab (f,(a) =2)
o(b) =ba (fr(b) =2)
f(c¥(a)) = 2¢

V labelling g, the language is essentially (0 + 1)*.
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Forward direction of the theorem

Theorem

L: a prefix-closed language.
Signature(L) is substitutive < L is accepted by a finite automaton.

(0,g): a substitutive signature.
(0,g) defines a finite automaton A, 4.
It is analogous to

m the prefix graph/automaton in Dumont—Thomas '89,'91,'93
m or the correspondence used in Maes—Rigo '02.

Proposition

The language accepted by A,z has signature (o, g).



Automaton associated with a subst. signature

o : A* — A* prolongable on a and g: A" — B*

Aog) = (A,B, 6, {a}, A)
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Automaton associated with a subst. signature
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Automaton associated with a subst. signature

o : A* — A* prolongable on a and g: A" — B*

Aog) = (A,B, 6, {a}, A)

g(a) = 0l
g(b)=10
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Automaton associated with a subst. signature
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Automaton associated with a subst. signature

o : A* — A* prolongable on a and g: A" — B*

Aog) = (A,B, 6, {a}, A)

o(a)=abc g(a)=012
o(b)=ab g(b)=12
o(c)=c glc)=1



Automaton associated with a subst. signature

o : A* — A* prolongable on a and g: A" — B*

Aog) = (A,B, 6, {a}, A)
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o(b)=ab g(b)=12
o(c)=c glc)=1
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Automaton associated with a subst. signature
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Automaton associated with a subst. signature

o : A* — A* prolongable on a and g: A" — B*

Aog) = (A,B, 6, {a}, A)

o(a)=abc g(a)=012
o(b)=ab g(b)=12
o(c)=c glc)=1
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Automaton associated with a subst. signature

o : A* — A* prolongable on a and g: A" — B*
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o : A* — A* prolongable on a and g: A" — B*

Aog) = (A,B, 6, {a}, A)




Forward direction of the theorem

Theorem

L: a prefix-closed language.
Signature(L) is substitutive < L is accepted by a finite automaton.

(0,g): a substitutive signature.
(0,g) defines a finite automaton A
It is analogous to

0,8):

m the prefix graph/automaton in Dumont Thomas '89,'91,'93

m or the correspondence used in Maes Rigo '02.

Proposition

The language accepted by A(, g has signature (o, g).



Forward direction of the theorem

Theorem

L: a prefix-closed language.
Signature(L) is substitutive < L is accepted by a finite automaton.

(0,g): a substitutive signature.
(0,g) defines a finite automaton A
It is analogous to

0,8):

m the prefix graph/automaton in Dumont Thomas '89,'91,'93
m or the correspondence used in Maes Rigo '02.

Proposition

The language accepted by A(, g has signature (o, g).

Proof: unfold the automaton A, ).
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JrThrough a finite, letter-to-letter and pure sequential transducer.



What will be in the augmented version

Abstract Numeration System:
built from an arbitrary regular language.

Dumont-Thomas Numeration system:
built from a substitution
Theorem (augmented version)

Two (prefix-closed) ANS built on language with same signature

(but different labelling) are easily’ convertible one from the other.

Theorem (augmented version)
Every DTNS is a prefix-closed ANS.
Every prefix-closed ARNS is easily’ convertible to a DTNS.

JrThrough a finite, letter-to-letter and pure sequential transducer.
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Other works: Ultimately periodic signatures

s = ur” with r = ronmn- - rg

Definition: growth ratio
rotrn—+-trg—1

gr(s) = 7
Theorem (MS, to appear)

If gr(s) € N, then s generates the language of a finite automaton.
It is linked? to the integer base b = gr(s).

If gr(s) ¢ N, then s generates a non-context-free language.
It is linked? to the rational base g = gr(s). (cf. Akiyama et al. '08)

1 It is a non-canonical representation of the integers (using extra digits).



Future works : Directed signatures

Aperiodic signature: s = spsy S -

Sy = %Zz;ésk: partial average of s.
a : lim S, extends the notion of growth ratio.
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