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Pumping lemma and Ogden lemma for displacement context-free grammars

Introduction

Motivation

What class of languages is the best for natural language

syntax?

context-free � not enough (Shieber, 1985; )

Some syntactic patterns have the form like ww .

Context-sensitive � too vast. Something between?

The answer is mildly context-sensitive (Joshi, 1985).
Some requirements:

Polynomial complexity.
Context independence (whatever � context � means).
Constant growth property.
Limited number of cross-serial dependencies.
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Introduction

Mildly context-sensitive languages

MIX = {w ∈ {a, b, c}∗ | |w |a = |w |b = |w |c} is not mildly

context-sensitive (Bach, 1984; Kanazawa, Salvati, 2012).

Candidates for mildly context-sensitive class:

Multiple context-free? First three requirements are satis�ed.

But MIX is a 2-MCFL (Salvati, 2012)!

Possible variant: well-nested multiple context-free (wMCFL)

(Kanazawa, 2008).

MIX is not a 2-wMCFL (equivalently, not a tree-adjoining

language) (Kanazawa, Salvati, 2012).

Probably, it is not a k-wMCFL for any k (Kanazawa-Salvati

conjecture, 2012). But how to prove it?
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Introduction

Proving non-wellnestedness

The proof of Kanazawa and Salvati uses combinatorial and

geometrical arguments. Di�cult to generalize.

Something more simple? Pumping lemma?

Slightly weak version (Kanazawa, 2008).

Usual version � only for TALs (Palis, Shende, 1995).

For TALs � also Ogden's lemma (Palis, Shende, 1995).
Our goal

1 Strong pumping lemma for wMCFGs.
2 Ogden's lemma for wMCFGs.
3 Some examples of non-wMCFGs.
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Displacement context-free grammars

Basic notions

Σ � alphabet.

N � nonterminals, s : N → [0; k] � rank function, k ∈ N.

Nonterminals of rank k derive (k + 1)-tuples of words.
Opk = {·,�1, . . . ,�k} � operations (on tuples).

· � concatenation:

(u0, . . . , us) · (v0, . . . , vt) = (u0, . . . , us−1, usv0, v2, . . . , vt).
�j � j-intercalation: (u0, . . . , us)�j (v0, . . . , vt) =
(u0, . . . , uj−2, uj−1v0, v1, . . . , vt−1, vtuj , . . . , us).
This operations generate the algebra of well-nested operations

on tuples.

Instead of tuples, gapped strings may be used.
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Displacement context-free grammars

Terms

Tmk(N,Σ) � terms:
N ⊂ Tmk(N,Σ),

for any s 6 k and u0, . . . , us ∈ Σ it holds that
u = (u0, . . . , us) ∈ Tmk , rk(u) = s.
If α, β ∈ Tmk and rk(α) + rk(β) 6 k, then
(α · β) ∈ Tmk , rk(α · β) = rk(α) + rk(β).
If j 6 k, α, β ∈ Tmk , rk(α) + rk(β) 6 k + 1, rk(α) > j , then
(α�j β) ∈ Tmk , rk(α · β) = rk(α) + rk(β)− 1.

GrTmk � ground terms (no nonterminals).

Any ground term α has a value ν(α).
Var = {x1, x2, . . .} � ranked set of free variables,

multicontext � a term with variables in some leaves (possibly

zero)

C [x1, . . . , xt ] � a multicontext, α1, . . . , αt � terms, s.t

∀j (rk(αj) = rk(xj)), then C [α1, . . . , αt ] � substitution of all

xj -s by αj -s.
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De�nition

A k-displacement context-free grammar is G = 〈N,Σ,P, S〉, where

Σ � alphabet,
N - ranked set of nonterminals,
S ∈ N � initial nonterminal, s(N) = 0,
P � the set of rules of the form
A→ α, A ∈ N, α ∈ Tmk , s(A) = s(α).

`G∈ N × Tmk � the smallest re�exive transitive relation, s.t

(B → β) ∈ P and A ` C [B] imply A ` C [β] for any context C .
LG (A) = {ν(α) | A `G α, α ∈ GrTmk}, L(G ) = LG (S).
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Displacement context-free grammars

Example

Gi = 〈{S ,T}, {a, b},Pi , S〉 with rk(T ) = i and the following Pi :

S → (. . . (︸ ︷︷ ︸
i−1 times

aT �1 a) + . . .)�1 a | (. . . (︸ ︷︷ ︸
i−1 times

bT �1 b) + . . .)�1 b,

T → (. . . (︸ ︷︷ ︸
i−1 times

aT �1 〈ε, a〉) + . . .)�i 〈ε, a〉

T → (. . . (︸ ︷︷ ︸
i−1 times

bT �1 〈ε, b〉+ . . .)�i 〈ε, b〉 | 〈ε, . . . , ε〉︸ ︷︷ ︸
(i+1) times

.

L(Gi ) = {w i+1 | w ∈ Σ+}
Here is the derivation of (aba)3 in G2:

S .
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Chomsky normal form and derivation trees

Chomsky normal form I

Two grammars are equivalent if they generate the same language.

Theorem (Chomsky normal form)

Every k-DCFG is equivalent to a k-DCFG G = 〈N,Σ,P, S〉 with
the rules only of the form:

1 A→ B · C , where A ∈ N, B,C ∈ N − {S},
2 A→ B �j C , where j 6 k , A ∈ N, B,C ∈ N − {S},
3 A→ a or A→ 〈ε, ε〉, where A ∈ N, a ∈ Σ,

4 S → ε.
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Chomsky normal form and derivation trees

Chomsky normal form II

Example

The grammar

G ′2 = 〈{S ,T2,U1,V1,U2,V2,W2,X2,A1,B1,A,B}, {a, b},P, S〉
with the following set of rules generates the language

{www | w ∈ Σ+}.

S → U1 �1 A S → V1 �1 B

U1 → U2 �1 A V1 → V2 �1 B

U2 → A · T V2 → B · T
T2 → W2 �2 A1 T2 → X2 �2 B1

W2 → U2 �1 A1 X2 → V2 � B1

U2 → 〈a, ε, ε〉 V2 → 〈b, ε, ε〉
A1 → 〈a, ε〉 B1 → 〈b, ε〉
A → a B → b
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Chomsky normal form and derivation trees

Derivation tree

The derivation tree of the word abaabaaba in G ′2:
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Chomsky normal form and derivation trees

Properties of trees and terms

Downward-closed subtrees correspond to subterms of the de-

rived term, and vice versa (so we may speak about nodes' ranks).

Well-formed subtrees correspond to terms.
If B is a label of a subtree, corresponding to a β, then B ` β.
If A ` C [β1, . . . , βt ] then there are nonterminals B1, . . . ,Bt

such A ` C [B1, . . . ,Bt ] and ∀i (Bi ` βi ).
If α = C [β] for some ground context C and rk(β) = l , then

there are tuples s1, s2, u1, . . . , ul such that α = s1(β⊗(u1, . . . , ul ))st .
(⊗ denotes simultaneous replacement of all the separators)
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(⊗ denotes simultaneous replacement of all the separators)

De�nition

A descendent v of a node u is direct, if all the nodes on the path

from u to v have the same rank (including u and v). β is a direct

subterm of α, if its root is a direct descendant of the root of α.
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Well-formed subtrees correspond to terms.
If B is a label of a subtree, corresponding to a β, then B ` β.
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(⊗ denotes simultaneous replacement of all the separators)

De�nition

A descendent v of a node u is direct, if all the nodes on the path

from u to v have the same rank (including u and v). β is a direct

subterm of α, if its root is a direct descendant of the root of α.

Lemma

If α = C [β] and β is a direct subterm of α, then there are words
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Structure of pumps

Pumping lemma: reminder
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Structure of pumps

Problems for DCFGs

For any recursive terminal A of a CFG G there are words u, v s.t.

uv 6= ε and A `G y implies A `G uyv .

We expect: for any recursive terminal A with rank s of a k-DCFG G

there are words u0, . . . , urk(A), v0, . . . , vrk(A) s.t. u0 . . . usv0 . . . vs 6=
ε and A `G 〈y0, . . . , ys〉 implies A `G 〈u0y0v0, . . . , usysvs〉.
That's not the case!

�1

A1

B1

〈u0, u1〉 �1

C0

〈w0,w1〉

A1

v0

D0

In this case A ` 〈w0,w1〉 implies A `G 〈u0, u1w0v0w1〉.
That's because the foot node of the pumped subtree is not a direct

descendant of its root.
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Transformations of derivations

Equivalence of terms

ν : Var→ B((Σ∗)∗) � valuation, if ν(A) ⊆ (Σ∗)rk(A)+1 for

any A ∈ N ∪Var.

For any u ∈ (Σ∗)+ ν(u) = u.

Extended to ground multicontexts in a natural way.

Ground multicontexts C1 and C2 are equivalent (C1 ∼ C2) i�

∀ν (ν(C1) = ν(C2). Terms α and β are equivalent if

α = C1[A1, . . . ,At ], β = C2[A1, . . . ,At ] and C1 ∼ C2. Two

syntactic trees are equivalent if they correspond to equivalent

terms.

Note: replacing a well-formed subtree by an equivalent one

doesn't change the word corresponding to the tree.

A term is l -essential, if its root and its leaves are of rank l or

less.
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Transformations of derivations

Equivalence of terms

ν : Var→ B((Σ∗)∗) � valuation, if ν(A) ⊆ (Σ∗)rk(A)+1 for

any A ∈ N ∪Var.
For any u ∈ (Σ∗)+ ν(u) = u.

Extended to ground multicontexts in a natural way.

Ground multicontexts C1 and C2 are equivalent (C1 ∼ C2) i�

∀ν (ν(C1) = ν(C2). Terms α and β are equivalent if

α = C1[A1, . . . ,At ], β = C2[A1, . . . ,At ] and C1 ∼ C2. Two

syntactic trees are equivalent if they correspond to equivalent

terms.

Note: replacing a well-formed subtree by an equivalent one

doesn't change the word corresponding to the tree.

A term is l -essential, if its root and its leaves are of rank l or

less.

Lemma

Every l -essential term α is equivalent to some l-correct β.
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Transformations of derivations

Removing bad subtrees

A term is l -redundant if it is l -essential, but not l -correct.

Let Nl denote the number of nonterminals of rank l .

A grammar G is l -duplicated if for any derivable rule A→ α
with l -redundant α with depth(α) 6 Nl + 1 there is a

derivable rule A→ α′, where α ∼ α′ and α ∈ Tml . <4->

Lemma

For any k-DCFG G and any l 6 k there is an equivalent

l -duplicated k-DCFG G ′ with the same set of nonterminals of rank

l and greater.
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Transformations of derivations

Compactness

De�nition

A subbranch in a syntactic tree is an l -matreshka, i� all the nodes

of it have rank l and its length is at least Nl + 1.

De�nition

A vicinity of a node v if the largest well-formed subtree containing

T such that all its internal nodes have the same rank as v .

De�nition

A derivation tree is m-compact, if for any node v of any rank l

there is a path from l to an element of an l ′ - matreshka with l ′ > l

such that its length is not greater than l and all the nodes on it are

of rank l or greater.

Lemma

For any k-DCFG G for some m there is an equivalent m-compact

k-DCFG.
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of rank l or greater.
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Pumping lemma and Ogden lemma for displacement context-free grammars

Transformations of derivations

Sketch of the proof

Proceed by downwards induction on l , start with l = k + 1 and

m = 0.

Consider l := l − 1, m := m + 2Nl and duplicate all

(l − 1)-redundant rules.
Take any node v of rank l and consider its vicinity.

It is deeper than Nl + 1 � it contains an l -matreshka.

If it contains some node of greater rank: use induction

hypothesis.

Otherwise it is l -redundant � replace the subtree by an

equivalent one, which is l -correct.
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Transformations of derivations

Pumping lemma

Theorem (Pumping lemma for k-DCFGs)

For any k-DCFG G there is a number n such that for any word

w ∈ L(G ), such that |w | > n, there is a decomposition

w = s0u1x1v1s1 . . . ukxkvksk , satisfying:

1

k∑
i=1

|uixivi | 6 n, u1v1 . . . ukvk 6= ε,

2 For any m ∈ N s0u
m
1 x1v

m
1 s1 . . . u

m
k xkv

m
k sk ∈ L(G ).

Theorem (Ogden lemma for 1-DCFGs (Palis, Shende, 1995))

For any TAG G there is a number n such that for any word

winL(G ) with at least n marked positions, such that |w | > n, there

is a decomposition w = s0u1x1v1s1u2x2v2s2, satisfying:

1

k∑
i=1

|uixivi | 6 n, u1v1u2v2 6= ε,

2 There is at least one marked position in one of u1, v1, u2, v2.
3 There is at least one marked position in one of x1, x2.
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Geometrical interpretations

Geometry of constituents

Any constituent of a context-free derivation tree of a word w is

speci�ed by two positions 0 6 i < j 6 |w |.

Constituens should be properly embedded: either [i ; j ]∩[i ′; j ′] =
∅ or [i ; j ] ⊆ [i ′; j ′].
DCFG constituents of rank l are characterized by 2(l + 1) num-

bers i0 < j0 6 i1 < . . . 6 il < jl .

Every tuple de�nes a curve:

i1 j1 i2 jk−1 ik jk. . . . . .. . .
. . .

Regions inside di�erent curves are either embedded or disjoint.

Possible: [1 ]1 [2 ]2 [3 ]3
i1 j1 i2 j2 i3 j3

[1 ]1 [2 ]2
i ′1 j ′1 i ′2 j ′2

Impossible: [1 ]1 [2 ]2 [3 ]3
i1 j1 i2 j2 i3 j3

[1 ]1 [2 ]2
i ′1 j ′1 i ′2 j ′2
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Pumping lemma and Ogden lemma for displacement context-free grammars

Geometrical interpretations

Geometry of pumps

Every pump is a di�erence of two constituents.

So a 2-DCFG pump is characterized by 8 numbers

i1 6 j1 6 k1 6 l1 6 i2 6 j2 6 k2 6 l2:

Lemma

If the pumps π = 〈i1, . . . , l2〉 and π′ = 〈i ′1, . . . , l ′2〉 do not have

common inner points, then one of the following conditions hold:

1 j1 6 i ′1 6 l ′2 6 k1
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Pumping lemma and Ogden lemma for displacement context-free grammars

Examples of non-1-DCFLs

4MIX language

We prove that 4MIX={w ∈ {a, b, c, d}∗ | |w |a = |w |b = |w |c
= |w |d} is not a 1-DCFL.

Su�cient for 4MIX∩(a+b+c+d+)2.
Every word in this language consists of 8 maximal

homogeneous fragments, each pump intersects with exactly 4

such fragments and has equal number of a-s, b-s, c-s and d -s.

We call a pump intersecting with fragments i1, . . . , ir a
[i1, . . . , ir ]-pump.

Consider the word w = am1bm2cm3dm4an1bn2cn3dn4 with
1 min (mj , nj) > t, where t is the number from Ogden's lemma,
2 m1 > (3M + 1)(M + t), where M = max (m2,m4, n3),
3 m4 > (n1 + 1)(n1 + t).

We want to prove the existence of a [1, 3, 6, 8]-pump.
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. . .
M

a . . . a︸ ︷︷ ︸
t

If two groups belong to the same pump, then there are at least

(M + 2) a-s in the pump.

It cannot be a [1, 2], [1, 4] or [1, 7]-
pump (m2, n3,m4 are too small), then it is a [1, 3, 6, 8]-pump.

If all the groups belong to di�erent pumps, then there are at

least M + 2 non-intersecting [1, 2] pumps, but m2 is too small.

Again, there exists a [1, 3, 6, 8]-pump.

By analogous arguments, there is a [1, 4]-pump.

It should be a [1, 4, 8]-pump, which is impossible. Then 4MIX

is not a 2-DCFL.
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MIX language

Theorem

MIX is not a 1-DCFL.

We prove for MIX ∩ a+b+c+b+c+a+,
w = am1bm2cm3bn2cn3an1 .

1 min (mj , nj) > t,
2 m1 > (4M + 1)(M + t), where M = max (m3, n2),
3 n1 > (4M + 1)(M + t), where M = max (m3, n2),
4 m3 > (2n2 + 1)(n2 + t).

There are at least 2M + 1 [1]-groups and [4]-groups on the

distance at least M.

Consequently, there is a [1, 2, 5, 6]-group.
There is a [2, 3]-group, which should be a [1, 2, 3, 6]-group
There is a [4]-group, but it could be only a [1, 2, 4, 6]-group,
which has no c-s. Contradiction.
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MIXp language

Theorem

MIXp = {w ∈ {a, b, c}+ | |w |a = |w |b = |w |c , ∀u ⊆ w |u|a >
|u|b > |u|c} is not a 1-DCFL.

Consider the word am1bm2an1cm3bn2cn3 with min (mj , nj) > t.

Every pump satis�es the pre�x condition.

Therefore [4]-pump is automatically a [1, 2, 4]-pump and

[3]-pump a [3, 5, 6]-pump.

If the �rst is embracing the second, it is a [1, 2, 4, 6]-pump �

impossible to combine them.

If the second � symmetrically. Contradiction.
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Future work

Ogden's lemma for k-DCFGs (or any other technique to

localize the pumps).

Apply this lemma to give counterexamples on higher levels of

DCFG hierarchy.

Kanazawa-Salvati conjecture (MIX is not a DCFL).
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Thank you!

Ñïàñèáî çà âíèìàíèå!
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