Alexey Sorokin^{1,2}

Moscow State University, Faculty of Mathematics and Mechanics

Moscow Institute of Physics and Technology, Faculty of Innovations and High Technologies

Developments in Language Theory'14 Ekaterinburg, August, 26th 2014

Motivation

• What class of languages is the best for natural language syntax?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Motivation

• What class of languages is the best for natural language syntax?

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• context-free — not enough (Shieber, 1985;)

Motivation

- What class of languages is the best for natural language syntax?
- context-free not enough (Shieber, 1985;)
 - Some syntactic patterns have the form like ww.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Motivation

- What class of languages is the best for natural language syntax?
- context-free not enough (Shieber, 1985;)
 - Some syntactic patterns have the form like ww.

(ロ) (型) (E) (E) (E) (O)

• Context-sensitive - too vast. Something between?

Motivation

- What class of languages is the best for natural language syntax?
- context-free not enough (Shieber, 1985;)
 - Some syntactic patterns have the form like ww.
- Context-sensitive too vast. Something between?
- The answer is mildly context-sensitive (Joshi, 1985).

Motivation

- What class of languages is the best for natural language syntax?
- context-free not enough (Shieber, 1985;)
 - Some syntactic patterns have the form like ww.
- Context-sensitive too vast. Something between?
- The answer is mildly context-sensitive (Joshi, 1985). But what are these languages?

うして ふゆう ふほう ふほう うらつ

• Some requirements:

Motivation

- What class of languages is the best for natural language syntax?
- context-free not enough (Shieber, 1985;)
 - Some syntactic patterns have the form like ww.
- Context-sensitive too vast. Something between?
- The answer is mildly context-sensitive (Joshi, 1985). But what are these languages?

- Some requirements:
 - Polynomial complexity.

Motivation

- What class of languages is the best for natural language syntax?
- context-free not enough (Shieber, 1985;)
 - Some syntactic patterns have the form like ww.
- Context-sensitive too vast. Something between?
- The answer is mildly context-sensitive (Joshi, 1985). But what are these languages?
- Some requirements:
 - Polynomial complexity.
 - Context independence (whatever " context " means).

Motivation

- What class of languages is the best for natural language syntax?
- context-free not enough (Shieber, 1985;)
 - Some syntactic patterns have the form like ww.
- Context-sensitive too vast. Something between?
- The answer is mildly context-sensitive (Joshi, 1985). But what are these languages?
- Some requirements:
 - Polynomial complexity.
 - Context independence (whatever " context " means).

うして ふゆう ふほう ふほう うらつ

• Constant growth property.

Motivation

- What class of languages is the best for natural language syntax?
- context-free not enough (Shieber, 1985;)
 - Some syntactic patterns have the form like ww.
- Context-sensitive too vast. Something between?
- The answer is mildly context-sensitive (Joshi, 1985). But what are these languages?
- Some requirements:
 - Polynomial complexity.
 - Context independence (whatever " context " means).

- Constant growth property.
- Limited number of cross-serial dependencies.

Mildly context-sensitive languages

MIX = {w ∈ {a, b, c}* | |w|_a = |w|_b = |w|_c} is not mildly context-sensitive (Bach, 1984; Kanazawa, Salvati, 2012).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Mildly context-sensitive languages

MIX = {w ∈ {a, b, c}* | |w|_a = |w|_b = |w|_c} is not mildly context-sensitive (Bach, 1984; Kanazawa, Salvati, 2012).

• Candidates for mildly context-sensitive class:

Mildly context-sensitive languages

- MIX = { $w \in \{a, b, c\}^* | |w|_a = |w|_b = |w|_c$ } is not mildly context-sensitive (Bach, 1984; Kanazawa, Salvati, 2012).
- Candidates for mildly context-sensitive class:
- Multiple context-free? First three requirements are satisfied.

Mildly context-sensitive languages

- MIX = { $w \in \{a, b, c\}^* | |w|_a = |w|_b = |w|_c$ } is not mildly context-sensitive (Bach, 1984; Kanazawa, Salvati, 2012).
- Candidates for mildly context-sensitive class:
- Multiple context-free? First three requirements are satisfied.

うして ふゆう ふほう ふほう うらつ

• But MIX is a 2-MCFL (Salvati, 2012)!

Mildly context-sensitive languages

- MIX = { $w \in \{a, b, c\}^* | |w|_a = |w|_b = |w|_c$ } is not mildly context-sensitive (Bach, 1984; Kanazawa, Salvati, 2012).
- Candidates for mildly context-sensitive class:
- Multiple context-free? First three requirements are satisfied.
- But MIX is a 2-MCFL (Salvati, 2012)!
- Possible variant: well-nested multiple context-free (wMCFL) (Kanazawa, 2008).

Mildly context-sensitive languages

- MIX = { $w \in \{a, b, c\}^* | |w|_a = |w|_b = |w|_c$ } is not mildly context-sensitive (Bach, 1984; Kanazawa, Salvati, 2012).
- Candidates for mildly context-sensitive class:
- Multiple context-free? First three requirements are satisfied.
- But MIX is a 2-MCFL (Salvati, 2012)!
- Possible variant: well-nested multiple context-free (wMCFL) (Kanazawa, 2008).
- MIX is not a 2-wMCFL (equivalently, not a tree-adjoining language) (Kanazawa, Salvati, 2012).

Mildly context-sensitive languages

- MIX = { $w \in \{a, b, c\}^* | |w|_a = |w|_b = |w|_c$ } is not mildly context-sensitive (Bach, 1984; Kanazawa, Salvati, 2012).
- Candidates for mildly context-sensitive class:
- Multiple context-free? First three requirements are satisfied.
- But MIX is a 2-MCFL (Salvati, 2012)!
- Possible variant: well-nested multiple context-free (wMCFL) (Kanazawa, 2008).
- MIX is not a 2-wMCFL (equivalently, not a tree-adjoining language) (Kanazawa, Salvati, 2012).
- Probably, it is not a k-wMCFL for any k (Kanazawa-Salvati conjecture, 2012). But how to prove it?

Proving non-wellnestedness

• The proof of Kanazawa and Salvati uses combinatorial and geometrical arguments. Difficult to generalize.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proving non-wellnestedness

• The proof of Kanazawa and Salvati uses combinatorial and geometrical arguments. Difficult to generalize.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

• Something more simple? Pumping lemma?

Proving non-wellnestedness

• The proof of Kanazawa and Salvati uses combinatorial and geometrical arguments. Difficult to generalize.

- Something more simple? Pumping lemma?
- Slightly weak version (Kanazawa, 2008).

Proving non-wellnestedness

• The proof of Kanazawa and Salvati uses combinatorial and geometrical arguments. Difficult to generalize.

- Something more simple? Pumping lemma?
- Slightly weak version (Kanazawa, 2008).
- Usual version only for TALs (Palis, Shende, 1995).

Proving non-wellnestedness

- The proof of Kanazawa and Salvati uses combinatorial and geometrical arguments. Difficult to generalize.
- Something more simple? Pumping lemma?
- Slightly weak version (Kanazawa, 2008).
- Usual version only for TALs (Palis, Shende, 1995).
- For TALs also Ogden's lemma (Palis, Shende, 1995).

Proving non-wellnestedness

- The proof of Kanazawa and Salvati uses combinatorial and geometrical arguments. Difficult to generalize.
- Something more simple? Pumping lemma?
- Slightly weak version (Kanazawa, 2008).
- Usual version only for TALs (Palis, Shende, 1995).
- For TALs also Ogden's lemma (Palis, Shende, 1995).

うして ふゆう ふほう ふほう うらつ

Our goal

Proving non-wellnestedness

- The proof of Kanazawa and Salvati uses combinatorial and geometrical arguments. Difficult to generalize.
- Something more simple? Pumping lemma?
- Slightly weak version (Kanazawa, 2008).
- Usual version only for TALs (Palis, Shende, 1995).
- For TALs also Ogden's lemma (Palis, Shende, 1995).

- Our goal
 - Strong pumping lemma for wMCFGs.

Proving non-wellnestedness

- The proof of Kanazawa and Salvati uses combinatorial and geometrical arguments. Difficult to generalize.
- Something more simple? Pumping lemma?
- Slightly weak version (Kanazawa, 2008).
- Usual version only for TALs (Palis, Shende, 1995).
- For TALs also Ogden's lemma (Palis, Shende, 1995).

- Our goal
 - Strong pumping lemma for wMCFGs.
 - Ogden's lemma for wMCFGs.

Proving non-wellnestedness

- The proof of Kanazawa and Salvati uses combinatorial and geometrical arguments. Difficult to generalize.
- Something more simple? Pumping lemma?
- Slightly weak version (Kanazawa, 2008).
- Usual version only for TALs (Palis, Shende, 1995).
- For TALs also Ogden's lemma (Palis, Shende, 1995).

- Our goal
 - Strong pumping lemma for wMCFGs.
 - Ogden's lemma for wMCFGs.
 - Some examples of non-wMCFGs.

Proving non-wellnestedness

- The proof of Kanazawa and Salvati uses combinatorial and geometrical arguments. Difficult to generalize.
- Something more simple? Pumping lemma?
- Slightly weak version (Kanazawa, 2008).
- Usual version only for TALs (Palis, Shende, 1995).
- For TALs also Ogden's lemma (Palis, Shende, 1995).
- Our goal
 - Strong pumping lemma for wMCFGs. Done
 - Ogden's lemma for wMCFGs. Not yet
 - Some examples of non-wMCFGs. Done for TALs

Displacement context-free grammars

Basic notions

• Σ — alphabet.

Displacement context-free grammars

Basic notions

- Σ alphabet.
- N nonterminals, $s: N \rightarrow [0; k]$ rank function, $k \in N$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Displacement context-free grammars

Basic notions

- Σ alphabet.
- N nonterminals, $s: N \rightarrow [0; k]$ rank function, $k \in N$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Nonterminals of rank k derive (k + 1)-tuples of words.

Displacement context-free grammars

Basic notions

- Σ alphabet.
- N nonterminals, $s: N \rightarrow [0; k]$ rank function, $k \in N$.

ション ふゆ アメリア メリア しょうくの

- Nonterminals of rank k derive (k + 1)-tuples of words.
- $Op_k = \{\cdot, \odot_1, \dots, \odot_k\}$ operations (on tuples).

Displacement context-free grammars

Basic notions

- Σ alphabet.
- N nonterminals, $s: N \rightarrow [0; k]$ rank function, $k \in N$.
- Nonterminals of rank k derive (k + 1)-tuples of words.
- $Op_k = \{\cdot, \odot_1, \ldots, \odot_k\}$ operations (on tuples).
- concatenation:

$$(u_0,\ldots,u_s)\cdot(v_0,\ldots,v_t)=(u_0,\ldots,u_{s-1},u_sv_0,v_2,\ldots,v_t).$$

ション ふゆ アメリア メリア しょうくの

Displacement context-free grammars

Basic notions

- Σ alphabet.
- N nonterminals, $s: N \rightarrow [0; k]$ rank function, $k \in N$.
- Nonterminals of rank k derive (k + 1)-tuples of words.
- $Op_k = \{\cdot, \odot_1, \dots, \odot_k\}$ operations (on tuples).
- · concatenation:

$$(u_0, \ldots, u_s) \cdot (v_0, \ldots, v_t) = (u_0, \ldots, u_{s-1}, u_s v_0, v_2, \ldots, v_t).$$

• $\odot_j - j$ -intercalation: $(u_0, \ldots, u_s) \odot_j (v_0, \ldots, v_t) = (u_0, \ldots, u_{j-2}, u_{j-1}v_0, v_1, \ldots, v_{t-1}, v_t u_j, \ldots, u_s).$

ション ふゆ アメリア メリア しょうくの

Displacement context-free grammars

Basic notions

- Σ alphabet.
- N nonterminals, $s: N \rightarrow [0; k]$ rank function, $k \in N$.
- Nonterminals of rank k derive (k + 1)-tuples of words.
- $Op_k = \{\cdot, \odot_1, \dots, \odot_k\}$ operations (on tuples).
- concatenation:

$$(u_0, \ldots, u_s) \cdot (v_0, \ldots, v_t) = (u_0, \ldots, u_{s-1}, u_s v_0, v_2, \ldots, v_t).$$

• $\odot_j - j$ -intercalation: $(u_0, \ldots, u_s) \odot_j (v_0, \ldots, v_t) = (u_0, \ldots, u_{j-2}, u_{j-1}v_0, v_1, \ldots, v_{t-1}, v_t u_j, \ldots, u_s).$

 This operations generate the algebra of well-nested operations on tuples.

うして ふゆう ふほう ふほう うらつ

ipies.

Displacement context-free grammars

Basic notions

۲

- Σ alphabet.
- N nonterminals, $s: N \rightarrow [0; k]$ rank function, $k \in N$.
- Nonterminals of rank k derive (k + 1)-tuples of words.
- $Op_k = \{\cdot, \odot_1, \dots, \odot_k\}$ operations (on tuples).
- concatenation:

$$(u_0,\ldots,u_s)\cdot(v_0,\ldots,v_t) = (u_0,\ldots,u_{s-1},u_sv_0,v_2,\ldots,v_t)$$

$$\odot_j - j \text{-intercalation:} (u_0,\ldots,u_s)\odot_j(v_0,\ldots,v_t) =$$

$$(u_0,\ldots,u_{j-2},u_{j-1}v_0,v_1,\ldots,v_{t-1},v_tu_j,\ldots,u_s).$$

 This operations generate the algebra of well-nested operations on tuples.

うして ふゆう ふほう ふほう うらつ

• Instead of tuples, gapped strings may be used.
◆□ > < 個 > < E > < E > E 9 < 0</p>

Displacement context-free grammars

Terms

•
$$\operatorname{Tm}_k(N, \Sigma)$$
 — terms:
• $N \subset \operatorname{Tm}_k(N, \Sigma)$,

Displacement context-free grammars

Terms

•
$$\operatorname{Tm}_k(N, \Sigma)$$
 — terms:
• $N \subset \operatorname{Tm}_k(N, \Sigma)$,
• for any $s \leq k$ and $u_0, \ldots, u_s \in \Sigma$ it holds that
 $u = (u_0, \ldots, u_s) \in \operatorname{Tm}_k$, $\operatorname{rk}(u) = s$.

Displacement context-free grammars

Terms

•
$$\operatorname{Tm}_k(N, \Sigma)$$
 — terms:
• $N \subset \operatorname{Tm}_k(N, \Sigma)$,
• for any $s \leq k$ and $u_0, \ldots, u_s \in \Sigma$ it holds that
 $u = (u_0, \ldots, u_s) \in \operatorname{Tm}_k$, $\operatorname{rk}(u) = s$.

Displacement context-free grammars

Terms

Displacement context-free grammars

Terms

Displacement context-free grammars

Terms

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- GrTm_k ground terms (no nonterminals).
- Any ground term α has a value $\nu(\alpha)$.

Displacement context-free grammars

Terms

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- Any ground term α has a value $\nu(\alpha)$.
- $Var = \{x_1, x_2, \ldots\}$ ranked set of free variables,

Displacement context-free grammars

Terms

- $Var = \{x_1, x_2, \ldots\}$ ranked set of free variables,
- multicontext a term with variables in some leaves (possibly zero)

Displacement context-free grammars

Terms

Pumping lemma and Ogden lemma for displacement context-free grammars Displacement context-free grammars

Displacement context-free grammars

Definition

A k-displacement context-free grammar is $G = \langle N, \Sigma, P, S \rangle$, where

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Displacement context-free grammars

Displacement context-free grammars

Definition

A k-displacement context-free grammar is $G = \langle N, \Sigma, P, S \rangle$, where

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Σ — alphabet,

Displacement context-free grammars

Displacement context-free grammars

Definition

A k-displacement context-free grammar is $G = \langle N, \Sigma, P, S \rangle$, where

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Σ — alphabet,

N - ranked set of nonterminals,

Displacement context-free grammars

Displacement context-free grammars

Definition

A k-displacement context-free grammar is $G = \langle N, \Sigma, P, S \rangle$, where

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

- Σ alphabet,
 - N ranked set of nonterminals,
 - $S \in N$ initial nonterminal, s(N) = 0,

Displacement context-free grammars

Displacement context-free grammars

Definition

A k-displacement context-free grammar is $G = \langle N, \Sigma, P, S \rangle$, where

うして ふゆう ふほう ふほう うらつ

Σ — alphabet,

N - ranked set of nonterminals,

 $S \in N$ — initial nonterminal, s(N) = 0,

P — the set of rules of the form

 $A \to \alpha, \ A \in N, \alpha \in \mathrm{Tm}_k, s(A) = s(\alpha).$

Displacement context-free grammars

Displacement context-free grammars

Definition

A k-displacement context-free grammar is $G = \langle N, \Sigma, P, S \rangle$, where

Σ — alphabet,

N - ranked set of nonterminals,

 $S \in N$ — initial nonterminal, s(N) = 0,

P — the set of rules of the form

 $A \to \alpha, \ A \in N, \alpha \in \mathrm{Tm}_k, s(A) = s(\alpha).$

• • $\vdash_{G} \in N \times Tm_{k}$ — the smallest reflexive transitive relation, s.t $(B \rightarrow \beta) \in P$ and $A \vdash C[B]$ imply $A \vdash C[\beta]$ for any context C.

うして ふゆう ふほう ふほう うらつ

Displacement context-free grammars

Displacement context-free grammars

Definition

A k-displacement context-free grammar is $G = \langle N, \Sigma, P, S \rangle$, where

Σ — alphabet,

N - ranked set of nonterminals,

 $S \in N$ — initial nonterminal, s(N) = 0,

P — the set of rules of the form

 $A \to \alpha, \ A \in N, \alpha \in \mathrm{Tm}_k, s(A) = s(\alpha).$

 ⊢_G∈ N × Tm_k — the smallest reflexive transitive relation, s.t (B → β) ∈ P and A ⊢ C[B] imply A ⊢ C[β] for any context C.
 L_G(A) = {ν(α) | A ⊢_G α, α ∈ GrTm_k}, L(G) = L_G(S).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Displacement context-free grammars

Example

$$G_i = \langle \{S, T\}, \{a, b\}, P_i, S \rangle \text{ with } \operatorname{rk}(T) = i \text{ and the following } P_i:$$

$$S \to \underbrace{(\dots (aT \odot_1 a) + \dots) \odot_1 a}_{i-1 \text{ times}} \underbrace{(\dots (bT \odot_1 b) + \dots) \odot_1 b}_{i-1 \text{ times}},$$

$$T \rightarrow \underbrace{(\dots(aT \odot_1 \langle \varepsilon, a \rangle) + \dots) \odot_i \langle \varepsilon, a \rangle}_{i-1 \text{ times}}$$

$$T \rightarrow \underbrace{(\dots(bT \odot_1 \langle \varepsilon, b \rangle + \dots) \odot_i \langle \varepsilon, b \rangle}_{i-1 \text{ times}} |\underbrace{\langle \varepsilon, \dots, \varepsilon \rangle}_{(i+1) \text{ times}} .$$

Displacement context-free grammars

Example

$$G_{i} = \langle \{S, T\}, \{a, b\}, P_{i}, S \rangle \text{ with } \operatorname{rk}(T) = i \text{ and the following } P_{i}:$$

$$S \to \underbrace{(\dots}_{i-1} \operatorname{d} T \odot_{1} a) + \dots \odot_{1} a \mid \underbrace{(\dots}_{i-1} \operatorname{b} T \odot_{1} b) + \dots \odot_{1} b$$

$$T \to \underbrace{(\dots}_{i-1} \operatorname{d} T \odot_{1} \langle \varepsilon, a \rangle) + \dots \odot_{i} \langle \varepsilon, a \rangle$$

$$T \to \underbrace{(\dots}_{i-1} \operatorname{times}_{i} \langle \varepsilon, b \rangle + \dots \odot_{i} \langle \varepsilon, b \rangle \mid \underbrace{\langle \varepsilon, \dots, \varepsilon \rangle}_{i-1} \ldots$$

$$i \to \underbrace{(\dots (bT \odot_{1} \langle \varepsilon, b \rangle + \dots) \odot_{i} \langle \varepsilon, b \rangle \mid (i+1) \text{ times}}_{i+1 \text{ times}}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

 $L(G_i) = \{w^{i+1} \mid w \in \Sigma^+\}$

Displacement context-free grammars

Example

$$G_i = \langle \{S, T\}, \{a, b\}, P_i, S \rangle \text{ with } \operatorname{rk}(T) = i \text{ and the following } P_i:$$

$$S \to \underbrace{(\dots (aT \odot_1 a) + \dots) \odot_1 a}_{i=1 \text{ times}} | \underbrace{(\dots (bT \odot_1 b) + \dots) \odot_1 b}_{i=1 \text{ times}}$$

,

$$T \rightarrow \underbrace{(\dots (aT \odot_1 \langle \varepsilon, a \rangle) + \dots) \odot_i \langle \varepsilon, a \rangle}_{i-1 \text{ times}}$$

$$T \rightarrow \underbrace{(\dots (bT \odot_1 \langle \varepsilon, b \rangle + \dots) \odot_i \langle \varepsilon, b \rangle |}_{i-1 \text{ times}} \underbrace{\langle \varepsilon, \dots, \varepsilon \rangle}_{(i+1) \text{ times}}$$

$$L(G_i) = \{w^{i+1} \mid w \in \Sigma^+\}$$

Here is the derivation of $(aba)^3$ in G_2 :

Displacement context-free grammars

Example

$$G_i = \langle \{S, T\}, \{a, b\}, P_i, S \rangle \text{ with } \operatorname{rk}(T) = i \text{ and the following } P_i:$$

$$S \rightarrow \underbrace{(\dots (a \ I \ \odot_1 \ a) + \dots) \odot_1 a}_{i-1 \text{ times}} \underbrace{(\dots (b \ I \ \odot_1 \ b) + \dots) \odot_1 b}_{i-1 \text{ times}},$$

$$T \rightarrow \underbrace{(\dots (a \ T \ \odot_1 \ \langle \varepsilon, a \rangle) + \dots) \odot_i \ \langle \varepsilon, a \rangle}_{i-1 \text{ times}},$$

$$T \rightarrow \underbrace{(\dots (b \ T \ \odot_1 \ \langle \varepsilon, b \rangle + \dots) \odot_i \ \langle \varepsilon, b \rangle}_{i-1 \text{ times}} \underbrace{(\varepsilon, \dots, \varepsilon)}_{(i+1) \text{ times}}.$$

$$L(G_i) = \{w^{i+1} \mid w \in \Sigma^+\}$$

Here is the derivation of $(aba)^3$ in G_2 :
S.

Displacement context-free grammars

Example

$$G_i = \langle \{S, T\}, \{a, b\}, P_i, S \rangle$$
 with $\operatorname{rk}(T) = i$ and the following P_i :

$$S \rightarrow \underbrace{(\dots (aT \odot_{1} a) + \dots) \odot_{1} a}_{i-1 \text{ times}} \underbrace{(\dots (bT \odot_{1} b) + \dots) \odot_{1} b}_{i-1 \text{ times}},$$

$$T \rightarrow \underbrace{(\dots (aT \odot_{1} \langle \varepsilon, a \rangle) + \dots) \odot_{i} \langle \varepsilon, a \rangle}_{i-1 \text{ times}},$$

$$T \rightarrow \underbrace{(\dots (bT \odot_{1} \langle \varepsilon, b \rangle + \dots) \odot_{i} \langle \varepsilon, b \rangle}_{i-1 \text{ times}},$$

$$(i+1) \text{ times}$$

$$L(G_i) = \{w^{i+1} \mid w \in \Sigma^+\}$$

Here is the derivation of $(aba)^3$ in G_2 :
 $S \rightarrow (aT \odot_1 a) \odot_1 a$.

Displacement context-free grammars

Example

$$G_i = \langle \{S, T\}, \{a, b\}, P_i, S \rangle \text{ with } \operatorname{rk}(T) = i \text{ and the following } P_i:$$

$$S \to (\dots (aT \odot_1 a) + \dots) \odot_1 a \mid (\dots (bT \odot_1 b) + \dots) \odot_1 b,$$

$$T \xrightarrow{i-1 \text{ times}}_{\substack{i-1 \text{ times} \\ i-1 \text{ times} \\ i-1 \text{ times} \\ T \xrightarrow{i-1 \text{ times}}_{\substack{i-1 \text{ times} \\ i-1 \text{ times} \\$$

$$\begin{array}{l} \mathcal{L}(G_i) = \{w^{i+1} \mid w \in \Sigma^+\} \\ \text{Here is the derivation of } (aba)^3 \text{ in } G_2: \\ S \to (aT \odot_1 a) \odot_1 a \to (a((bT \odot_1 \langle \varepsilon, b \rangle) \odot_2 \langle \varepsilon, b \rangle) \odot_1 a) \odot_1 a. \end{array}$$

Displacement context-free grammars

Example

$$G_i = \langle \{S, T\}, \{a, b\}, P_i, S \rangle$$
 with $\operatorname{rk}(T) = i$ and the following P_i :

$$S \rightarrow \underbrace{(\dots (aT \odot_{1} a) + \dots) \odot_{1} a}_{i-1 \text{ times}} [\underbrace{(\dots (bT \odot_{1} b) + \dots) \odot_{1} b}_{i-1 \text{ times}}, \\ T \rightarrow \underbrace{(\dots (aT \odot_{1} \langle \varepsilon, a \rangle) + \dots) \odot_{i} \langle \varepsilon, a \rangle}_{i-1 \text{ times}} \\ T \rightarrow \underbrace{(\dots (bT \odot_{1} \langle \varepsilon, b \rangle + \dots) \odot_{i} \langle \varepsilon, b \rangle}_{i-1 \text{ times}} [\underbrace{\langle \varepsilon, \dots, \varepsilon \rangle}_{(i+1) \text{ times}}.$$

$$\begin{split} \mathcal{L}(G_i) &= \{ w^{i+1} \mid w \in \Sigma^+ \} \\ \text{Here is the derivation of } (aba)^3 \text{ in } G_2 : \\ \mathcal{S} &\to (aT \odot_1 a) \odot_1 a \to (a((bT \odot_1 \langle \varepsilon, b \rangle) \odot_2 \langle \varepsilon, b \rangle) \odot_1 a) \odot_1 a \to \\ (a((b((aT \odot_1 \langle \varepsilon, a \rangle) \odot_2 \langle \varepsilon, a \rangle) \odot_1 \langle \varepsilon, b \rangle) \odot_2 \langle \varepsilon, b \rangle) \odot_1 a) \odot_1 a \to . \end{split}$$

Displacement context-free grammars

Example

$$G_i = \langle \{S, T\}, \{a, b\}, P_i, S \rangle$$
 with $rk(T) = i$ and the following P_i :

$$S \rightarrow \underbrace{(\dots (aT \odot_{1} a) + \dots) \odot_{1} a}_{i-1 \text{ times}} | \underbrace{(\dots (bT \odot_{1} b) + \dots) \odot_{1} b}_{i-1 \text{ times}},$$

$$T \rightarrow \underbrace{(\dots (aT \odot_{1} \langle \varepsilon, a \rangle) + \dots) \odot_{i} \langle \varepsilon, a \rangle}_{i-1 \text{ times}},$$

$$T \rightarrow \underbrace{(\dots (bT \odot_{1} \langle \varepsilon, b \rangle + \dots) \odot_{i} \langle \varepsilon, b \rangle}_{i-1 \text{ times}} | \underbrace{\langle \varepsilon, \dots, \varepsilon \rangle}_{(i+1) \text{ times}}.$$

$$\begin{split} \mathcal{L}(G_i) &= \{ w^{i+1} \mid w \in \Sigma^+ \} \\ \text{Here is the derivation of } (aba)^3 \text{ in } G_2 \text{:} \\ S &\to (aT \odot_1 a) \odot_1 a \to (a((bT \odot_1 \langle \varepsilon, b \rangle) \odot_2 \langle \varepsilon, b \rangle) \odot_1 a) \odot_1 a \to (a((b((aT \odot_1 \langle \varepsilon, a \rangle) \odot_2 \langle \varepsilon, a \rangle) \odot_1 \langle \varepsilon, b \rangle) \odot_2 \langle \varepsilon, b \rangle) \odot_1 a) \odot_1 a \to (a((b((\langle a, \varepsilon, \varepsilon \rangle \odot_1 \langle \varepsilon, a \rangle) \odot_2 \langle \varepsilon, a \rangle) \odot_1 \langle \varepsilon, b \rangle) \odot_2 \langle \varepsilon, b \rangle) \odot_1 a) . \end{split}$$

Displacement context-free grammars

Example

$$G_{i} = \langle \{S, T\}, \{a, b\}, P_{i}, S \rangle \text{ with } \operatorname{rk}(T) = i \text{ and the following } P_{i}:$$

$$S \rightarrow \underbrace{(\dots}_{i-1} aT \odot_{1} a) + \dots \odot_{1} a \mid \underbrace{(\dots}_{i-1} bT \odot_{1} b) + \dots \odot_{1} b,$$

$$\stackrel{i-1 \text{ times}}{I \rightarrow \underbrace{(\dots}_{i-1} aT \odot_{1} \langle \varepsilon, a \rangle) + \dots \odot_{i} \langle \varepsilon, a \rangle}$$

$$T \rightarrow \underbrace{(\dots}_{i-1} bT \odot_{1} \langle \varepsilon, b \rangle + \dots \odot_{i} \langle \varepsilon, b \rangle \mid \underbrace{\langle \varepsilon, \dots, \varepsilon \rangle}_{(i+1) \text{ times}}.$$

$$L(G_{i}) = \{w^{i+1} \mid w \in \Sigma^{+}\}$$
Here is the derivation of $(aba)^{3}$ in $G_{2}:$

$$S \rightarrow (aT \odot_{1} a) \odot_{1} a \rightarrow (a((bT \odot_{1} \langle \varepsilon, b \rangle) \odot_{2} \langle \varepsilon, b \rangle) \odot_{1} a) \odot_{1} a \rightarrow$$

$$(a((b((aT \odot_{1} \langle \varepsilon, a \rangle) \odot_{2} \langle \varepsilon, a \rangle) \odot_{1} \langle \varepsilon, b \rangle) \odot_{2} \langle \varepsilon, b \rangle) \odot_{1} a) \odot_{1} a \rightarrow$$

$$(a((b((\langle a, \varepsilon, \varepsilon \rangle \odot_{1} \langle \varepsilon, a \rangle) \odot_{2} \langle \varepsilon, a \rangle) \odot_{1} \langle \varepsilon, b \rangle) \odot_{2} \langle \varepsilon, b \rangle) \odot_{1} a) =$$

$$(a(b(\langle a, a, a \rangle \odot_{1} (\langle \varepsilon, b \rangle)) + 2 (\langle \varepsilon, b \rangle)) + 1 a) \odot_{1} a =$$

Chomsky normal form |

Two grammars are equivalent if they generate the same language.

Theorem (Chomsky normal form)

Every k-DCFG is equivalent to a k-DCFG $G = \langle N, \Sigma, P, S \rangle$ with the rules only of the form:

うして ふゆう ふほう ふほう うらつ

3
$$A
ightarrow a$$
 or $A
ightarrow \langle arepsilon, arepsilon
angle$, where $A \in N, \; a \in \Sigma,$

Chomsky normal form ||

Example

The grammar $\begin{aligned} G_2' &= \langle \{S, T_2, U_1, V_1, U_2, V_2, W_2, X_2, A_1, B_1, A, B\}, \{a, b\}, P, S \rangle \\ \text{with the following set of rules generates the language} \\ \{www \mid w \in \Sigma^+ \}. \end{aligned}$

Derivation tree

The derivation tree of the word *abaabaaba* in G'_2 :

Derivation tree

• Downward-closed subtrees correspond to subterms of the derived term, and vice versa (so we may speak about nodes' ranks).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Downward-closed subtrees correspond to subterms of the derived term, and vice versa (so we may speak about nodes' ranks).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

• Well-formed subtrees correspond to terms.

- Downward-closed subtrees correspond to subterms of the derived term, and vice versa (so we may speak about nodes' ranks).
- Well-formed subtrees correspond to terms.
- If B is a label of a subtree, corresponding to a β , then $B \vdash \beta$.

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Properties of trees and terms

- Downward-closed subtrees correspond to subterms of the derived term, and vice versa (so we may speak about nodes' ranks).
- Well-formed subtrees correspond to terms.
- If B is a label of a subtree, corresponding to a β , then $B \vdash \beta$.
- If $A \vdash C[\beta_1, \ldots, \beta_t]$ then there are nonterminals B_1, \ldots, B_t such $A \vdash C[B_1, \ldots, B_t]$ and $\forall i (B_i \vdash \beta_i)$.

うして ふゆう ふほう ふほう うらつ

- Downward-closed subtrees correspond to subterms of the derived term, and vice versa (so we may speak about nodes' ranks).
- Well-formed subtrees correspond to terms.
- If B is a label of a subtree, corresponding to a β , then $B \vdash \beta$.
- If $A \vdash C[\beta_1, \ldots, \beta_t]$ then there are nonterminals B_1, \ldots, B_t such $A \vdash C[B_1, \ldots, B_t]$ and $\forall i (B_i \vdash \beta_i)$.
- If α = C[β] for some ground context C and rk(β) = I, then there are tuples s₁, s₂, u₁,..., u_I such that α = s₁(β⊗(u₁,..., u_I))s_t. (⊗ denotes simultaneous replacement of all the separators)

- Downward-closed subtrees correspond to subterms of the derived term, and vice versa (so we may speak about nodes' ranks).
- Well-formed subtrees correspond to terms.
- If B is a label of a subtree, corresponding to a β , then $B \vdash \beta$.
- If $A \vdash C[\beta_1, \ldots, \beta_t]$ then there are nonterminals B_1, \ldots, B_t such $A \vdash C[B_1, \ldots, B_t]$ and $\forall i \ (B_i \vdash \beta_i)$.
- If α = C[β] for some ground context C and rk(β) = I, then there are tuples s₁, s₂, u₁,..., u_I such that α = s₁(β⊗(u₁,..., u_I))s_t. (⊗ denotes simultaneous replacement of all the separators)

Definition

A descendent v of a node u is direct, if all the nodes on the path from u to v have the same rank (including u and v). β is a direct subterm of α , if its root is a direct descendant of the root of α .

- Downward-closed subtrees correspond to subterms of the derived term, and vice versa (so we may speak about nodes' ranks).
- Well-formed subtrees correspond to terms.
- If B is a label of a subtree, corresponding to a β , then $B \vdash \beta$.
- If $A \vdash C[\beta_1, \ldots, \beta_t]$ then there are nonterminals B_1, \ldots, B_t such $A \vdash C[B_1, \ldots, B_t]$ and $\forall i (B_i \vdash \beta_i)$.
- If α = C[β] for some ground context C and rk(β) = I, then there are tuples s₁, s₂, u₁,..., u_I such that α = s₁(β⊗(u₁,..., u_I))s_t. (⊗ denotes simultaneous replacement of all the separators)

Definition

A descendent v of a node u is direct, if all the nodes on the path from u to v have the same rank (including u and v). β is a direct subterm of α , if its root is a direct descendant of the root of α .

Lemma

If $\alpha = C[\beta]$ and β is a direct subterm of α , then there are words $s_1, s_2, u_1, v_1, \dots, u_l, v_l$, s.t. $\alpha = s_1(\beta \otimes (\langle u_1, v_1 \rangle, \dots, \langle u_l, v_l \rangle))s_2$.
Pumping lemma and Ogden lemma for displacement context-free grammars

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Structure of pumps

Pumping lemma: reminder

Pumping lemma and Ogden lemma for displacement context-free grammars Structure of pumps

Pumping lemma: reminder

V

Pumping lemma and Ogden lemma for displacement context-free grammars

Structure of pumps

Pumping lemma: reminder

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

For any recursive terminal A of a CFG G there are words u, v s.t. $uv \neq \varepsilon$ and $A \vdash_G y$ implies $A \vdash_G uyv$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

For any recursive terminal A of a CFG G there are words u, v s.t. $uv \neq \varepsilon$ and $A \vdash_G y$ implies $A \vdash_G uyv$. We expect: for any recursive terminal A with rank s of a k-DCFG G there are words $u_0, \ldots, u_{rk(A)}, v_0, \ldots, v_{rk(A)}$ s.t. $u_0 \ldots u_s v_0 \ldots v_s \neq \varepsilon$ ε and $A \vdash_G \langle y_0, \ldots, y_s \rangle$ implies $A \vdash_G \langle u_0 y_0 v_0, \ldots, u_s y_s v_s \rangle$.

ション ふゆ く 山 マ チャット しょうくしゃ

For any recursive terminal A of a CFG G there are words u, v s.t. $uv \neq \varepsilon$ and $A \vdash_G y$ implies $A \vdash_G uyv$. We expect: for any recursive terminal A with rank s of a k-DCFG G there are words $u_0, \ldots, u_{rk(A)}, v_0, \ldots, v_{rk(A)}$ s.t. $u_0 \ldots u_s v_0 \ldots v_s \neq \varepsilon$ ε and $A \vdash_G \langle y_0, \ldots, y_s \rangle$ implies $A \vdash_G \langle u_0 y_0 v_0, \ldots, u_s y_s v_s \rangle$. That's not the case!

ション ふゆ く 山 マ チャット しょうくしゃ

For any recursive terminal A of a CFG G there are words u, v s.t. $uv \neq \varepsilon$ and $A \vdash_G y$ implies $A \vdash_G uyv$. We expect: for any recursive terminal A with rank s of a k-DCFG G there are words $u_0, \ldots, u_{rk(A)}, v_0, \ldots, v_{rk(A)}$ s.t. $u_0 \ldots u_s v_0 \ldots v_s \neq \varepsilon$ ε and $A \vdash_G \langle y_0, \ldots, y_s \rangle$ implies $A \vdash_G \langle u_0 y_0 v_0, \ldots, u_s y_s v_s \rangle$. That's not the case! A

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

For any recursive terminal A of a CFG G there are words u, v s.t. $uv \neq \varepsilon$ and $A \vdash_G v$ implies $A \vdash_G uvv$. We expect: for any recursive terminal A with rank s of a k-DCFG Gthere are words $u_0, \ldots, u_{rk(A)}, v_0, \ldots, v_{rk(A)}$ s.t. $u_0 \ldots u_s v_0 \ldots v_s \neq$ ε and $A \vdash_G \langle y_0, \ldots, y_s \rangle$ implies $A \vdash_G \langle u_0 y_0 v_0, \ldots, u_s y_s v_s \rangle$. That's not the case!

Vn

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

In this case $A \vdash \langle w_0, w_1 \rangle$ implies $A \vdash_G \langle u_0, u_1 w_0 v_0 w_1 \rangle$.

For any recursive terminal A of a CFG G there are words u, v s.t. $uv \neq \varepsilon$ and $A \vdash_G y$ implies $A \vdash_G uyv$. We expect: for any recursive terminal A with rank s of a k-DCFG G there are words $u_0, \ldots, u_{rk(A)}, v_0, \ldots, v_{rk(A)}$ s.t. $u_0 \ldots u_s v_0 \ldots v_s \neq \varepsilon$ ε and $A \vdash_G \langle y_0, \ldots, y_s \rangle$ implies $A \vdash_G \langle u_0 y_0 v_0, \ldots, u_s y_s v_s \rangle$. That's not the case! A

 $\langle w_0, w_1 \rangle \qquad v_0$

In this case $A \vdash \langle w_0, w_1 \rangle$ implies $A \vdash_G \langle u_0, u_1 w_0 v_0 w_1 \rangle$. That's because the foot node of the pumped subtree is not a direct descendant of its root.

Equivalence of terms

•
$$\nu : \operatorname{Var} \to \mathcal{B}((\Sigma^*)^*) - \operatorname{valuation}$$
, if $\nu(A) \subseteq (\Sigma^*)^{rk(A)+1}$ for any $A \in N \cup \operatorname{Var}$.

Equivalence of terms

•
$$\nu : \operatorname{Var} \to \mathcal{B}((\Sigma^*)^*)$$
 — valuation, if $\nu(A) \subseteq (\Sigma^*)^{rk(A)+1}$ for any $A \in N \cup \operatorname{Var}$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• For any $u\in (\Sigma^*)^+$ u(u)=u.

Equivalence of terms

• $\nu : \operatorname{Var} \to \mathcal{B}((\Sigma^*)^*) - \operatorname{valuation}$, if $\nu(A) \subseteq (\Sigma^*)^{rk(A)+1}$ for any $A \in N \cup \operatorname{Var}$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- For any $u \in (\Sigma^*)^+$ u(u) = u.
- Extended to ground multicontexts in a natural way.

Transformations of derivations

Equivalence of terms

- $\nu : \operatorname{Var} \to \mathcal{B}((\Sigma^*)^*) \operatorname{valuation}$, if $\nu(A) \subseteq (\Sigma^*)^{rk(A)+1}$ for any $A \in N \cup \operatorname{Var}$.
- For any $u \in (\Sigma^*)^+$ $\nu(u) = u$.
- Extended to ground multicontexts in a natural way.
- Ground multicontexts C_1 and C_2 are equivalent $(C_1 \sim C_2)$ iff $\forall \nu \ (\nu(C_1) = \nu(C_2)$. Terms α and β are equivalent if $\alpha = C_1[A_1, \dots, A_t], \ \beta = C_2[A_1, \dots, A_t]$ and $C_1 \sim C_2$. Two syntactic trees are equivalent if they correspond to equivalent terms.

Transformations of derivations

Equivalence of terms

- $\nu : \operatorname{Var} \to \mathcal{B}((\Sigma^*)^*) \operatorname{valuation}$, if $\nu(A) \subseteq (\Sigma^*)^{rk(A)+1}$ for any $A \in N \cup \operatorname{Var}$.
- For any $u \in (\Sigma^*)^+$ $\nu(u) = u$.
- Extended to ground multicontexts in a natural way.
- Ground multicontexts C_1 and C_2 are equivalent $(C_1 \sim C_2)$ iff $\forall \nu \ (\nu(C_1) = \nu(C_2)$. Terms α and β are equivalent if $\alpha = C_1[A_1, \dots, A_t], \ \beta = C_2[A_1, \dots, A_t]$ and $C_1 \sim C_2$. Two syntactic trees are equivalent if they correspond to equivalent terms.
- Note: replacing a well-formed subtree by an equivalent one doesn't change the word corresponding to the tree.

Transformations of derivations

Equivalence of terms

- $\nu : \operatorname{Var} \to \mathcal{B}((\Sigma^*)^*) \operatorname{valuation}$, if $\nu(A) \subseteq (\Sigma^*)^{rk(A)+1}$ for any $A \in N \cup \operatorname{Var}$.
- For any $u \in (\Sigma^*)^+$ $\nu(u) = u$.
- Extended to ground multicontexts in a natural way.
- Ground multicontexts C_1 and C_2 are equivalent $(C_1 \sim C_2)$ iff $\forall \nu \ (\nu(C_1) = \nu(C_2)$. Terms α and β are equivalent if $\alpha = C_1[A_1, \dots, A_t], \ \beta = C_2[A_1, \dots, A_t]$ and $C_1 \sim C_2$. Two syntactic trees are equivalent if they correspond to equivalent terms.
- Note: replacing a well-formed subtree by an equivalent one doesn't change the word corresponding to the tree.
- A term is *l*-essential, if its root and its leaves are of rank *l* or less.

Equivalence of terms

- $\nu : \operatorname{Var} \to \mathcal{B}((\Sigma^*)^*) \operatorname{valuation}$, if $\nu(A) \subseteq (\Sigma^*)^{rk(A)+1}$ for any $A \in N \cup \operatorname{Var}$.
- For any $u\in (\Sigma^*)^+$ u(u)=u.
- Extended to ground multicontexts in a natural way.
- Ground multicontexts C_1 and C_2 are equivalent $(C_1 \sim C_2)$ iff $\forall \nu \ (\nu(C_1) = \nu(C_2)$. Terms α and β are equivalent if $\alpha = C_1[A_1, \dots, A_t], \ \beta = C_2[A_1, \dots, A_t]$ and $C_1 \sim C_2$. Two syntactic trees are equivalent if they correspond to equivalent terms.
- Note: replacing a well-formed subtree by an equivalent one doesn't change the word corresponding to the tree.
- A term is *l*-essential, if its root and its leaves are of rank *l* or less.

Lemma

Every I-essential term α is equivalent to some I-correct β .

Removing bad subtrees

• A term is *l*-redundant if it is *l*-essential, but not *l*-correct.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Removing bad subtrees

• A term is *l*-redundant if it is *l*-essential, but not *l*-correct.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Let N_I denote the number of nonterminals of rank I.

Removing bad subtrees

- A term is *I*-redundant if it is *I*-essential, but not *I*-correct.
- Let N₁ denote the number of nonterminals of rank 1.
- A grammar G is *I*-duplicated if for any derivable rule A → α with *I*-redundant α with depth(α) ≤ N_I + 1 there is a derivable rule A → α', where α ~ α' and α ∈ Tm_I. <4->

Lemma

For any k-DCFG G and any $l \leq k$ there is an equivalent l-duplicated k-DCFG G' with the same set of nonterminals of rank l and greater.

うして ふゆう ふほう ふほう うらつ

Compactness

Definition

A subbranch in a syntactic tree is an *I*-matreshka, iff all the nodes of it have rank *I* and its length is at least $N_I + 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Compactness

Definition

A subbranch in a syntactic tree is an *I*-matreshka, iff all the nodes of it have rank *I* and its length is at least $N_I + 1$.

Definition

A vicinity of a node v if the largest well-formed subtree containing T such that all its internal nodes have the same rank as v.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Compactness

Definition

A subbranch in a syntactic tree is an *I*-matreshka, iff all the nodes of it have rank *I* and its length is at least $N_I + 1$.

Definition

A vicinity of a node v if the largest well-formed subtree containing T such that all its internal nodes have the same rank as v.

blue — the same rank as v red — rank, diverse from v

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Compactness

Definition

A subbranch in a syntactic tree is an *I*-matreshka, iff all the nodes of it have rank *I* and its length is at least $N_I + 1$.

Definition

A vicinity of a node v if the largest well-formed subtree containing T such that all its internal nodes have the same rank as v.

Definition

A derivation tree is *m*-compact, if for any node *v* of any rank *l* there is a path from *l* to an element of an l' - matreshka with $l' \ge l$ such that its length is not greater than *l* and all the nodes on it are of rank *l* or greater.

Compactness

Definition

A subbranch in a syntactic tree is an *I*-matreshka, iff all the nodes of it have rank *I* and its length is at least $N_I + 1$.

Definition

A vicinity of a node v if the largest well-formed subtree containing T such that all its internal nodes have the same rank as v.

Definition

A derivation tree is *m*-compact, if for any node *v* of any rank *l* there is a path from *l* to an element of an l' - matreshka with $l' \ge l$ such that its length is not greater than *l* and all the nodes on it are of rank *l* or greater.

Lemma

For any k-DCFG G for some m there is an equivalent m-compact k-DCFG.

Sketch of the proof

Proceed by downwards induction on *I*, start with *I* = *k* + 1 and *m* = 0.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Sketch of the proof

Proceed by downwards induction on *I*, start with *I* = *k* + 1 and *m* = 0.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Consider l := l - 1, $m := m + 2N_l$ and duplicate all (l - 1)-redundant rules.

Proceed by downwards induction on *I*, start with *I* = *k* + 1 and *m* = 0.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Consider l := l 1, $m := m + 2N_l$ and duplicate all (l 1)-redundant rules.
- Take any node v of rank I and consider its vicinity.

Proceed by downwards induction on *I*, start with *I* = *k* + 1 and *m* = 0.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Consider l := l 1, $m := m + 2N_l$ and duplicate all (l 1)-redundant rules.
- Take any node v of rank I and consider its vicinity.
- It is deeper than $N_l + 1$ it contains an *l*-matreshka.

Proceed by downwards induction on *l*, start with *l* = *k* + 1 and *m* = 0.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- Consider l := l 1, $m := m + 2N_l$ and duplicate all (l 1)-redundant rules.
- Take any node v of rank I and consider its vicinity.
- It is deeper than $N_l + 1$ it contains an l-matreshka.
- If it contains some node of greater rank: use induction hypothesis.

- Proceed by downwards induction on *l*, start with *l* = *k* + 1 and *m* = 0.
- Consider l := l 1, $m := m + 2N_l$ and duplicate all (l 1)-redundant rules.
- Take any node v of rank I and consider its vicinity.
- It is deeper than $N_l + 1$ it contains an *l*-matreshka.
- If it contains some node of greater rank: use induction hypothesis.
- Otherwise it is *l*-redundant replace the subtree by an equivalent one, which is *l*-correct.

うして ふゆう ふほう ふほう うらつ

Pumping lemma

Theorem (Pumping lemma for k-DCFGs)

For any k-DCFG G there is a number n such that for any word $w \in L(G)$, such that $|w| \ge n$, there is a decomposition $w = s_0 u_1 x_1 v_1 s_1 \dots u_k x_k v_k s_k$, satisfying: $\sum_{i=1}^{k} |u_i x_i v_i| \le n$, $u_1 v_1 \dots u_k v_k \ne \varepsilon$, For any $m \in \mathbb{N}$ $s_0 u_1^m x_1 v_1^m s_1 \dots u_k^m x_k v_k^m s_k \in L(G)$.

うして ふゆう ふほう ふほう うらつ

Pumping lemma

Theorem (Pumping lemma for k-DCFGs)

For any k-DCFG G there is a number n such that for any word $w \in L(G)$, such that $|w| \ge n$, there is a decomposition $w = s_0 u_1 x_1 v_1 s_1 \dots u_k x_k v_k s_k$, satisfying: $\sum_{i=1}^{n} |u_i x_i v_i| \leq n, \quad u_1 v_1 \dots u_k v_k \neq \varepsilon,$ 2 For any $m \in \mathbb{N}$ $s_0 u_1^m x_1 v_1^m s_1 \dots u_k^m x_k v_k^m s_k \in L(G)$. Theorem (Ogden lemma for 1-DCFGs (Palis, Shende, 1995)) For any TAG G there is a number n such that for any word winL(G) with at least n marked positions, such that $|w| \ge n$, there is a decomposition $w = s_0 u_1 x_1 v_1 s_1 u_2 x_2 v_2 s_2$, satisfying:

$$\sum_{i=1}^{n} |u_i x_i v_i| \leqslant n, \quad u_1 v_1 u_2 v_2 \neq \varepsilon,$$

2 There is at least one marked position in one of u_1, v_1, u_2, v_2 .

Solution There is at least one marked position in one of x₁, x₂.

Geometry of constituents

 Any constituent of a context-free derivation tree of a word w is specified by two positions 0 ≤ i < j ≤ |w|.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Geometry of constituents

- Any constituent of a context-free derivation tree of a word w is specified by two positions 0 ≤ i < j ≤ |w|.
- Constituens should be properly embedded: either $[i;j] \cap [i';j'] = \emptyset$ or $[i;j] \subseteq [i';j']$.

うして ふゆう ふほう ふほう うらつ

Geometry of constituents

- Any constituent of a context-free derivation tree of a word w is specified by two positions $0 \leq i < j \leq |w|$.
- Constituens should be properly embedded: either $[i; j] \cap [i'; j'] =$ \emptyset or $[i; j] \subseteq [i'; j']$. Geometrically:

Possible: [[]]

ション ふゆ く 山 マ チャット しょうくしゃ

Geometry of constituents

- Any constituent of a context-free derivation tree of a word w is specified by two positions 0 ≤ i < j ≤ |w|.
- Constituens should be properly embedded: either $[i;j] \cap [i';j'] = \emptyset$ or $[i;j] \subseteq [i';j']$.
- DCFG constituents of rank / are characterized by 2(l+1) numbers i₀ < j₀ ≤ i₁ < ... ≤ i₁ < j₁.

ション ふゆ く 山 マ ふ し マ うくの
Geometry of constituents

- Any constituent of a context-free derivation tree of a word w is specified by two positions 0 ≤ i < j ≤ |w|.
- Constituens should be properly embedded: either $[i;j] \cap [i';j'] = \emptyset$ or $[i;j] \subseteq [i';j']$.
- DCFG constituents of rank *l* are characterized by 2(l+1) numbers $i_0 < j_0 \leq i_1 < \ldots \leq i_l < j_l$. Every tuple defines a curve: $i_1 \quad j_1 \quad i_2 \quad \cdots \quad j_{k-1} \quad i_k \quad j_k$

ション ふゆ く 山 マ チャット しょうくしゃ

Geometry of constituents

- Any constituent of a context-free derivation tree of a word w is specified by two positions 0 ≤ i < j ≤ |w|.
- Constituens should be properly embedded: either $[i;j] \cap [i';j'] = \emptyset$ or $[i;j] \subseteq [i';j']$.
- DCFG constituents of rank *l* are characterized by 2(l+1) numbers $i_0 < j_0 \leq i_1 < \ldots \leq i_l < j_l$. Every tuple defines a curve: $i_1 \quad j_1 \quad i_2 \quad \cdots \quad j_{k-1} \quad i_k \quad j_k$
- Regions inside different curves are either embedded or disjoint.

ション ふゆ く 山 マ チャット しょうくしゃ

Geometry of constituents

- Any constituent of a context-free derivation tree of a word w is specified by two positions $0 \le i < j \le |w|$.
- Constituens should be properly embedded: either $[i;j] \cap [i';j'] = \emptyset$ or $[i;j] \subseteq [i';j']$.
- DCFG constituents of rank / are characterized by 2(l+1) numbers $i_0 < j_0 \leq i_1 < \ldots \leq i_l < j_l$. Every tuple defines a curve: $i_1 \quad j_1 \quad i_2 \quad \cdots \quad j_{k-1} \quad i_k \quad j_k$

Geometry of constituents

- Any constituent of a context-free derivation tree of a word w is specified by two positions $0 \le i < j \le |w|$.
- Constituens should be properly embedded: either $[i;j] \cap [i';j'] = \emptyset$ or $[i;j] \subseteq [i';j']$.
- DCFG constituents of rank / are characterized by 2(l+1) numbers $i_0 < j_0 \leq i_1 < \ldots \leq i_l < j_l$. Every tuple defines a curve: $i_1 \quad j_1 \quad i_2 \quad \cdots \quad j_{k-1} \quad j_k \quad j_k$

- Regions inside different curves are either embedded or disjoint.
 - Possible: $\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 2 & 2 & 3 & 2 & 2 \\ i_1 & i'_1 & j'_1 & j_1 & j_2 & j_2 & j_3 & j'_2 & j'_2 & j_3 & j'_3 &$

Geometry of pumps

• Every pump is a difference of two constituents.

Geometry of pumps

- Every pump is a difference of two constituents.
- So a 2-DCFG pump is characterized by 8 numbers

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 $i_1 \leqslant j_1 \leqslant k_1 \leqslant l_1 \leqslant i_2 \leqslant j_2 \leqslant k_2 \leqslant l_2$:

Geometry of pumps

- Every pump is a difference of two constituents.
- So a 2-DCFG pump is characterized by 8 numbers $i_1 \leq j_1 \leq k_1 \leq l_1 \leq i_2 \leq j_2 \leq k_2 \leq l_2$:

(ロ) (型) (E) (E) (E) (O)

Geometry of pumps

- Every pump is a difference of two constituents.
- So a 2-DCFG pump is characterized by 8 numbers $i_1 \leq j_1 \leq k_1 \leq l_1 \leq i_2 \leq j_2 \leq k_2 \leq l_2$:

Lemma

If the pumps $\pi = \langle i_1, \ldots, l_2 \rangle$ and $\pi' = \langle i'_1, \ldots, l'_2 \rangle$ do not have common inner points, then one of the following conditions hold:

うして ふゆう ふほう ふほう うらう

Geometry of pumps

- Every pump is a difference of two constituents.
- So a 2-DCFG pump is characterized by 8 numbers $i_1 \leq j_1 \leq k_1 \leq l_1 \leq i_2 \leq j_2 \leq k_2 \leq l_2$:

Lemma

If the pumps $\pi = \langle i_1, \ldots, l_2 \rangle$ and $\pi' = \langle i'_1, \ldots, l'_2 \rangle$ do not have common inner points, then one of the following conditions hold: **1** $j_1 \leq i'_1 \leq l'_2 \leq k_1$

Geometry of pumps

- Every pump is a difference of two constituents.
- So a 2-DCFG pump is characterized by 8 numbers $i_1 \leq j_1 \leq k_1 \leq l_1 \leq i_2 \leq j_2 \leq k_2 \leq l_2$:

Lemma

If the pumps $\pi = \langle i_1, \ldots, l_2 \rangle$ and $\pi' = \langle i'_1, \ldots, l'_2 \rangle$ do not have common inner points, then one of the following conditions hold: **1** $j_1 \leq i'_1 \leq l'_2 \leq k_1$ **2** $j_1 \leq i'_1 \leq l'_2 \leq k_1 \leq j_2 \leq i'_2 \leq l'_2 \leq k_2$

Geometry of pumps

- Every pump is a difference of two constituents.
- So a 2-DCFG pump is characterized by 8 numbers $i_1 \leq j_1 \leq k_1 \leq l_1 \leq i_2 \leq j_2 \leq k_2 \leq l_2$:

Lemma

If the pumps $\pi = \langle i_1, \ldots, l_2 \rangle$ and $\pi' = \langle i'_1, \ldots, l'_2 \rangle$ do not have common inner points, then one of the following conditions hold: **1** $j_1 \leq i'_1 \leq l'_2 \leq k_1$ **2** $j_1 \leq i'_1 \leq l'_1 \leq k_1 \leq j_2 \leq i'_2 \leq l'_2 \leq k_2$ **3** $l_1 \leq i'_1 \leq l'_2 \leq i_2$

Geometry of pumps

- Every pump is a difference of two constituents.
- So a 2-DCFG pump is characterized by 8 numbers $i_1 \leq i_1 \leq k_1 \leq l_1 \leq i_2 \leq i_2 \leq k_2 \leq l_2$:

Lemma

If the pumps $\pi = \langle i_1, \ldots, i_2 \rangle$ and $\pi' = \langle i'_1, \ldots, i'_2 \rangle$ do not have common inner points, then one of the following conditions hold: **1** $j_1 \leq i'_1 \leq i'_2 \leq k_1$ **2** $j_1 \leq i'_1 \leq i'_1 \leq k_1 \leq j_2 \leq i'_2 \leq i'_2 \leq k_2$ **3** $l_1 \leq i'_1 \leq l'_2 \leq i_2$ **4** $j_2 \leq i'_2 \leq k_2$

Geometry of pumps

- Every pump is a difference of two constituents.
- So a 2-DCFG pump is characterized by 8 numbers $i_1 \leq j_1 \leq k_1 \leq l_1 \leq i_2 \leq j_2 \leq k_2 \leq l_2$:

Lemma

If the pumps $\pi = \langle i_1, \ldots, l_2 \rangle$ and $\pi' = \langle i'_1, \ldots, l'_2 \rangle$ do not have common inner points, then one of the following conditions hold: (a) $j_1 \leqslant i'_1 \leqslant l'_2 \leqslant k_1$ (b) $j_1 \leqslant i'_1 \leqslant l'_1 \leqslant k_1 \leqslant j_2 \leqslant i'_2 \leqslant l'_2 \leqslant k_2$ (c) $l_1 \leqslant i'_1 \leqslant l'_2 \leqslant i_2$ (c) $j_2 \leqslant i'_1 \leqslant l'_2 \leqslant k_2$ (c) $l_2 \leqslant i'_1$

ション ふゆ く 山 マ チャット しょうくしゃ

Geometry of pumps

- Every pump is a difference of two constituents.
- So a 2-DCFG pump is characterized by 8 numbers $i_1 \leq j_1 \leq k_1 \leq l_1 \leq i_2 \leq j_2 \leq k_2 \leq l_2$:

Lemma

If the pumps $\pi = \langle i_1, \ldots, l_2 \rangle$ and $\pi' = \langle i'_1, \ldots, l'_2 \rangle$ do not have common inner points, then one of the following conditions hold: (a) $j_1 \leqslant i'_1 \leqslant l'_2 \leqslant k_1$ (b) $j_1 \leqslant i'_1 \leqslant l'_1 \leqslant k_1 \leqslant j_2 \leqslant i'_2 \leqslant l'_2 \leqslant k_2$ (c) $l_1 \leqslant i'_1 \leqslant l'_2 \leqslant i_2$ (c) $j_2 \leqslant i'_1 \leqslant l'_2 \leqslant k_2$ (c) $l_2 \leqslant i'_1$

Note: For any pumps $\pi = \langle i_1, \ldots, l_2 \rangle$ and $\pi' = \langle i'_1, \ldots, l'_2 \rangle$ either $l_2 \leq i'_1$ or $i_1 \leq i'_1 \leq l'_2 \leq l_2$.

4MIX language

• We prove that $4MIX = \{w \in \{a, b, c, d\}^* | |w|_a = |w|_b = |w|_c = |w|_d\}$ is not a 1-DCFL.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

4MIX language

• We prove that $4MIX = \{w \in \{a, b, c, d\}^* | |w|_a = |w|_b = |w|_c = |w|_d\}$ is not a 1-DCFL. Sufficient for $4MIX \cap (a^+b^+c^+d^+)^2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

4MIX language

- We prove that $4MIX = \{w \in \{a, b, c, d\}^* | |w|_a = |w|_b = |w|_c = |w|_d\}$ is not a 1-DCFL. Sufficient for $4MIX \cap (a^+b^+c^+d^+)^2$.
- Every word in this language consists of 8 maximal homogeneous fragments, each pump intersects with exactly 4 such fragments and has equal number of a-s, b-s, c-s and d-s.

ション ふゆ く 山 マ チャット しょうくしゃ

4MIX language

- We prove that $4MIX = \{w \in \{a, b, c, d\}^* | |w|_a = |w|_b = |w|_c = |w|_d\}$ is not a 1-DCFL. Sufficient for $4MIX \cap (a^+b^+c^+d^+)^2$.
- Every word in this language consists of 8 maximal homogeneous fragments, each pump intersects with exactly 4 such fragments and has equal number of *a*-s, *b*-s, *c*-s and *d*-s. We call a pump intersecting with fragments *i*₁,..., *i_r* a [*i*₁,..., *i_r*]-pump.

4MIX language

- We prove that $4MIX = \{w \in \{a, b, c, d\}^* | |w|_a = |w|_b = |w|_c$ = $|w|_d\}$ is not a 1-DCFL. Sufficient for $4MIX \cap (a^+b^+c^+d^+)^2$.
- Every word in this language consists of 8 maximal homogeneous fragments, each pump intersects with exactly 4 such fragments and has equal number of *a*-s, *b*-s, *c*-s and *d*-s. We call a pump intersecting with fragments *i*₁,..., *i_r* a [*i*₁,..., *i_r*]-pump.
- Consider the word $w = a^{m_1} b^{m_2} c^{m_3} d^{m_4} a^{n_1} b^{n_2} c^{n_3} d^{n_4}$ with
 - 1 min $(m_j, n_j) \ge t$, where t is the number from Ogden's lemma, 2 $m_1 \ge (3M+1)(M+t)$, where $M = \max(m_2, m_4, n_3)$, 3 $m_4 \ge (n_1+1)(n_1+t)$.

4MIX language

- We prove that $4MIX = \{w \in \{a, b, c, d\}^* | |w|_a = |w|_b = |w|_c$ = $|w|_d\}$ is not a 1-DCFL. Sufficient for $4MIX \cap (a^+b^+c^+d^+)^2$.
- Every word in this language consists of 8 maximal homogeneous fragments, each pump intersects with exactly 4 such fragments and has equal number of *a*-s, *b*-s, *c*-s and *d*-s. We call a pump intersecting with fragments *i*₁,..., *i_r* a [*i*₁,..., *i_r*]-pump.
- Consider the word $w = a^{m_1} b^{m_2} c^{m_3} d^{m_4} a^{n_1} b^{n_2} c^{n_3} d^{n_4}$ with
 - 1 min $(m_j, n_j) \ge t$, where t is the number from Ogden's lemma, 2 $m_1 \ge (3M+1)(M+t)$, where $M = \max(m_2, m_4, n_3)$, 3 $m_4 \ge (n_1+1)(n_1+t)$.

• We want to prove the existence of a [1, 3, 6, 8]-pump.

4MIX language ||

• $w = a^{m_1} b^{m_2} c^{m_3} d^{m_4} a^{n_1} b^{n_2} c^{n_3} d^{n_4}$.

• min $(m_i, n_i) \ge t$, where t is the number from Ogden's lemma, 2 $m_1 \ge (3M+1)(M+t)$, where $M = \max(m_2, m_4, n_3)$,

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

3 $m_4 \ge (n_1 + 1)(n_1 + t)$.

4MIX language ||

•
$$w = a^{m_1} b^{m_2} c^{m_3} d^{m_4} a^{n_1} b^{n_2} c^{n_3} d^{n_4}$$
,
• $min(m_j, n_j) \ge t$, where t is the number from Ogden's lemma,
• $m_1 \ge (3M+1)(M+t)$, where $M = max(m_2, m_4, n_3)$,
• $m_4 \ge (n_1+1)(n_1+t)$.
• $m_4 \ge (n_1+1)(n_1+t)$.
• $M \xrightarrow{d \dots d} t \xrightarrow{M} M \xrightarrow{d \dots d} t$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

4MIX language ||

•
$$w = a^{m_1} b^{m_2} c^{m_3} d^{m_4} a^{n_1} b^{n_2} c^{n_3} d^{n_4}$$
,
• $min(m_j, n_j) \ge t$, where t is the number from Ogden's lemma,
• $m_1 \ge (3M+1)(M+t)$, where $M = max(m_2, m_4, n_3)$,
• $m_4 \ge (n_1+1)(n_1+t)$.
• $m_4 \ge (n_1+1)(n_1+t)$.
• $M \xrightarrow{d \dots d} M$
• $M \xrightarrow{d \dots d} t$

• If two groups belong to the same pump, then there are at least (M+2) *a*-s in the pump.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

4MIX language ||

•
$$w = a^{m_1} b^{m_2} c^{m_3} d^{m_4} a^{n_1} b^{n_2} c^{n_3} d^{n_4}$$
,
• $\min(m_j, n_j) \ge t$, where t is the number from Ogden's lemma,
• $m_1 \ge (3M+1)(M+t)$, where $M = \max(m_2, m_4, n_3)$,
• $m_4 \ge (n_1+1)(n_1+t)$.
• $a \dots a_t$
• M

• If two groups belong to the same pump, then there are at least (M + 2) *a*-s in the pump. It cannot be a [1,2], [1,4] or [1,7]-pump $(m_2, n_3, m_4$ are too small), then it is a [1,3,6,8]-pump.

ション ふゆ アメリア メリア しょうくの

4MIX language ||

•
$$w = a^{m_1} b^{m_2} c^{m_3} d^{m_4} a^{n_1} b^{n_2} c^{n_3} d^{n_4}$$
,
• $\min(m_j, n_j) \ge t$, where t is the number from Ogden's lemma,
• $m_1 \ge (3M+1)(M+t)$, where $M = \max(m_2, m_4, n_3)$,
• $m_4 \ge (n_1+1)(n_1+t)$.
• $m_4 \ge (n_1+1)(n_1+t)$.
• $M \xrightarrow{d \dots d} t \xrightarrow{M} M \xrightarrow{d \dots d} t$

- If two groups belong to the same pump, then there are at least (M + 2) *a*-s in the pump. It cannot be a [1,2], [1,4] or [1,7]-pump $(m_2, n_3, m_4$ are too small), then it is a [1,3,6,8]-pump.
- If all the groups belong to different pumps, then there are at least M + 2 non-intersecting [1,2] pumps, but m₂ is too small. Again, there exists a [1,3,6,8]-pump.

4MIX language ||

•
$$w = a^{m_1} b^{m_2} c^{m_3} d^{m_4} a^{n_1} b^{n_2} c^{n_3} d^{n_4}$$
,
• $min(m_j, n_j) \ge t$, where t is the number from Ogden's lemma,
• $m_1 \ge (3M+1)(M+t)$, where $M = max(m_2, m_4, n_3)$,
• $m_4 \ge (n_1+1)(n_1+t)$.
• $d \dots d t$
• M
•

- If two groups belong to the same pump, then there are at least (M + 2) *a*-s in the pump. It cannot be a [1, 2], [1, 4] or [1, 7]-pump $(m_2, n_3, m_4$ are too small), then it is a [1, 3, 6, 8]-pump.
- If all the groups belong to different pumps, then there are at least M + 2 non-intersecting [1,2] pumps, but m₂ is too small. Again, there exists a [1,3,6,8]-pump.
- By analogous arguments, there is a [1, 4]-pump.

4MIX language ||

•
$$w = a^{m_1}b^{m_2}c^{m_3}d^{m_4}a^{n_1}b^{n_2}c^{n_3}d^{n_4}$$
,
1 min $(m_j, n_j) \ge t$, where t is the number from Ogden's lemma,
2 $m_1 \ge (3M+1)(M+t)$, where $M = \max(m_2, m_4, n_3)$,
3 $m_4 \ge (n_1+1)(n_1+t)$.
4 \cdots M
4 \cdots

- If two groups belong to the same pump, then there are at least (M + 2) *a*-s in the pump. It cannot be a [1,2], [1,4] or [1,7]-pump $(m_2, n_3, m_4$ are too small), then it is a [1,3,6,8]-pump.
- If all the groups belong to different pumps, then there are at least M + 2 non-intersecting [1,2] pumps, but m₂ is too small. Again, there exists a [1,3,6,8]-pump.
- By analogous arguments, there is a [1, 4]-pump.
- It should be a [1,4,8]-pump, which is impossible. Then 4MIX is not a 2-DCFL.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

MIX language

Theorem

MIX is not a 1-DCFL.

MIX language

Theorem

MIX is not a 1-DCFL.

• We prove for MIX $\cap a^+b^+c^+b^+c^+a^+$, $w = a^{m_1}b^{m_2}c^{m_3}b^{n_2}c^{n_3}a^{n_1}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

MIX language

Theorem

MIX is not a 1-DCFL.

• We prove for MIX
$$\cap a^+b^+c^+b^+c^+a^+$$
,
 $w = a^{m_1}b^{m_2}c^{m_3}b^{n_2}c^{n_3}a^{n_1}$.

• (1)
$$\min(m_j, n_j) \ge t$$
,
(2) $m_1 \ge (4M+1)(M+t)$, where $M = \max(m_3, n_2)$,
(3) $n_1 \ge (4M+1)(M+t)$, where $M = \max(m_3, n_2)$,
(4) $m_3 \ge (2n_2+1)(n_2+t)$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

MIX language

Theorem

MIX is not a 1-DCFL.

• We prove for MIX $\cap a^+b^+c^+b^+c^+a^+$, $w = a^{m_1}b^{m_2}c^{m_3}b^{n_2}c^{n_3}a^{n_1}$.

• (1)
$$\min(m_j, n_j) \ge t$$
,
(2) $m_1 \ge (4M+1)(M+t)$, where $M = \max(m_3, n_2)$,
(3) $n_1 \ge (4M+1)(M+t)$, where $M = \max(m_3, n_2)$,
(4) $m_3 \ge (2n_2+1)(n_2+t)$.

• There are at least 2*M* + 1 [1]-groups and [4]-groups on the distance at least *M*.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

MIX language

Theorem

MIX is not a 1-DCFL.

• We prove for MIX $\cap a^+b^+c^+b^+c^+a^+$, $w = a^{m_1}b^{m_2}c^{m_3}b^{n_2}c^{n_3}a^{n_1}$.

• 1 min
$$(m_j, n_j) \ge t$$
,
2 $m_1 \ge (4M + 1)(M + t)$, where $M = \max(m_3, n_2)$,
3 $n_1 \ge (4M + 1)(M + t)$, where $M = \max(m_3, n_2)$,
4 $m_3 \ge (2n_2 + 1)(n_2 + t)$.

• There are at least 2M + 1 [1]-groups and [4]-groups on the distance at least M.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• Consequently, there is a [1,2,5,6]-group.

MIX language

Theorem

MIX is not a 1-DCFL.

• We prove for MIX $\cap a^+b^+c^+b^+c^+a^+$, $w = a^{m_1}b^{m_2}c^{m_3}b^{n_2}c^{n_3}a^{n_1}$.

• **1** min
$$(m_j, n_j) \ge t$$
,
2 $m_1 \ge (4M + 1)(M + t)$, where $M = \max(m_3, n_2)$,
3 $n_1 \ge (4M + 1)(M + t)$, where $M = \max(m_3, n_2)$,
4 $m_3 \ge (2n_2 + 1)(n_2 + t)$.

- There are at least 2M + 1 [1]-groups and [4]-groups on the distance at least M.
- Consequently, there is a [1,2,5,6]-group.
- There is a [2,3]-group, which should be a [1,2,3,6]-group

ション ふゆ く 山 マ チャット しょうくしゃ

MIX language

Theorem

MIX is not a 1-DCFL.

• We prove for MIX $\cap a^+b^+c^+b^+c^+a^+$, $w = a^{m_1}b^{m_2}c^{m_3}b^{n_2}c^{n_3}a^{n_1}$.

• (1)
$$\min(m_j, n_j) \ge t$$
,
(2) $m_1 \ge (4M + 1)(M + t)$, where $M = \max(m_3, n_2)$,
(3) $n_1 \ge (4M + 1)(M + t)$, where $M = \max(m_3, n_2)$,
(4) $m_3 \ge (2n_2 + 1)(n_2 + t)$.

- There are at least 2M + 1 [1]-groups and [4]-groups on the distance at least M.
- Consequently, there is a [1, 2, 5, 6]-group.
- There is a [2,3]-group, which should be a [1,2,3,6]-group
- There is a [4]-group, but it could be only a [1,2,4,6]-group, which has no *c*-s. Contradiction.

MIX_p language

Theorem

$$\begin{split} \mathrm{MIX}_p &= \{ w \in \{a, b, c\}^+ \mid |w|_a = |w|_b = |w|_c, \forall u \subseteq w |u|_a \geqslant \\ |u|_b \geqslant |u|_c \} \text{ is not a 1-DCFL.} \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

MIX_p language

Theorem

$$\begin{split} \mathrm{MIX}_p &= \{ w \in \{a, b, c\}^+ \mid |w|_a = |w|_b = |w|_c, \forall u \subseteq w |u|_a \geqslant \\ |u|_b \geqslant |u|_c \} \text{ is not a 1-DCFL.} \end{split}$$

• Consider the word $a^{m_1}b^{m_2}a^{n_1}c^{m_3}b^{n_2}c^{n_3}$ with min $(m_i, n_i) \ge t$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●
MIX_p language

Theorem

$$\begin{split} \mathrm{MIX}_p &= \{ w \in \{a, b, c\}^+ \mid |w|_a = |w|_b = |w|_c, \forall u \subseteq w |u|_a \geqslant \\ |u|_b \geqslant |u|_c \} \text{ is not a 1-DCFL.} \end{split}$$

• Consider the word $a^{m_1}b^{m_2}a^{n_1}c^{m_3}b^{n_2}c^{n_3}$ with min $(m_j, n_j) \ge t$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Every pump satisfies the prefix condition.

MIX_p language

Theorem

$$\begin{split} \mathrm{MIX}_p &= \{ w \in \{a, b, c\}^+ \mid |w|_a = |w|_b = |w|_c, \forall u \subseteq w |u|_a \geqslant \\ |u|_b \geqslant |u|_c \} \text{ is not a 1-DCFL.} \end{split}$$

• Consider the word $a^{m_1}b^{m_2}a^{n_1}c^{m_3}b^{n_2}c^{n_3}$ with min $(m_j, n_j) \ge t$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

- Every pump satisfies the prefix condition.
- Therefore [4]-pump is automatically a [1, 2, 4]-pump and [3]-pump a [3, 5, 6]-pump.

MIX_p language

Theorem

$$\begin{split} \mathrm{MIX}_p &= \{ w \in \{a, b, c\}^+ \mid |w|_a = |w|_b = |w|_c, \forall u \subseteq w |u|_a \geqslant \\ |u|_b \geqslant |u|_c \} \text{ is not a 1-DCFL.} \end{split}$$

- Consider the word $a^{m_1}b^{m_2}a^{n_1}c^{m_3}b^{n_2}c^{n_3}$ with min $(m_j, n_j) \ge t$.
- Every pump satisfies the prefix condition.
- Therefore [4]-pump is automatically a [1, 2, 4]-pump and [3]-pump a [3, 5, 6]-pump.
- If the first is embracing the second, it is a [1,2,4,6]-pump impossible to combine them.

ション ふゆ く 山 マ チャット しょうくしゃ

MIX_{p} language

Theorem

$$\begin{split} \mathrm{MIX}_p &= \{ w \in \{a, b, c\}^+ \mid |w|_a = |w|_b = |w|_c, \forall u \subseteq w |u|_a \geqslant \\ |u|_b \geqslant |u|_c \} \text{ is not a 1-DCFL.} \end{split}$$

- Consider the word $a^{m_1}b^{m_2}a^{n_1}c^{m_3}b^{n_2}c^{n_3}$ with min $(m_j, n_j) \ge t$.
- Every pump satisfies the prefix condition.
- Therefore [4]-pump is automatically a [1, 2, 4]-pump and [3]-pump a [3, 5, 6]-pump.
- If the first is embracing the second, it is a [1,2,4,6]-pump impossible to combine them.

ション ふゆ く 山 マ チャット しょうくしゃ

MIX_p language

Theorem

$$\begin{split} \mathrm{MIX}_p &= \{ w \in \{a, b, c\}^+ \mid |w|_a = |w|_b = |w|_c, \forall u \subseteq w |u|_a \geqslant \\ |u|_b \geqslant |u|_c \} \text{ is not a 1-DCFL.} \end{split}$$

- Consider the word $a^{m_1}b^{m_2}a^{n_1}c^{m_3}b^{n_2}c^{n_3}$ with min $(m_j, n_j) \ge t$.
- Every pump satisfies the prefix condition.
- Therefore [4]-pump is automatically a [1, 2, 4]-pump and [3]-pump a [3, 5, 6]-pump.
- If the first is embracing the second, it is a [1,2,4,6]-pump impossible to combine them.

ション ふゆ く 山 マ チャット しょうくしゃ

• If the second — symmetrically. Contradiction.

Future work

• Ogden's lemma for *k*-DCFGs (or any other technique to localize the pumps).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Future work

- Ogden's lemma for *k*-DCFGs (or any other technique to localize the pumps).
- Apply this lemma to give counterexamples on higher levels of DCFG hierarchy.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Future work

- Ogden's lemma for *k*-DCFGs (or any other technique to localize the pumps).
- Apply this lemma to give counterexamples on higher levels of DCFG hierarchy.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Kanazawa-Salvati conjecture (MIX is not a DCFL).

Thank you! Спасибо за внимание!

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()